14 research outputs found
On the proton radiography of magnetic fields in targets irradiated by intense picosecond laser pulses
Proton radiography is a common diagnostic technique in laser-driven magnetic field generation studies. It is based on measuring proton beam deflection in electromagnetic fields induced around the target with the help of radiochromic film stacks. Unraveling information recorded in experimental radiographs and extracting the field profiles is not always a straightforward task. In this paper, some aspects of data analysis by reproducing experimental radiographs in numerical simulations are described. The approach allows determining the field strength and structure in the target area for various target geometries
ΠΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½Π°Ρ ΡΡΠ°ΠΊΡΠΎΠ³ΡΠ°ΡΠΈΡ: Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π°, ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄Π°Π½Π½ΡΡ
Purpose: systematization of the knowledge about diffusion tensor magnetic resonance tomography; analysis of literature related to current limitations of this method and possibilities of overcoming these limitations.Materials and methods. We have analyzed 74 publications (6 ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½ΠΎ 74 ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ (6 Russian, 68 foreign), published in the time period from 1986 to 2021years.Β More, than half of these articles were published in the last ten years, 19 studies-in the time period from 2016 to 2021years.Results. In this article weΒ represent the physical basis of diffusion weighted techniques of magnetic resonance tomography, principles of obtaining diffusion weighted images and diffusion tensor, cover the specific features of the probabilistic and deterministic approaches of the diffusion tensor MRI data processing, describe methods of evaluation of the diffusion characteristics of tissues in clinical practice. Article provides a thorough introduction to the reasons of existing limitations of diffusion tensor MRI and systematization the main developed approaches of overcoming these limitations, such as multi-tensor model, high angular resolution diffusion imaging, diffusion kurtosis visualization. The article consistently reviews the stages of data processing of diffusion tensor magnetic resonance tomography (preprocessing, processing and post processing). We also describe the special aspects of the main approaches to the quantitative data analysis of diffusion tensor magnetic resonance tomography (such as analysis of the region of interest, analysis of the total data amount, quantitative tractography).Conclusion. Magnetic resonance tractography is a unique technique for noninvasive in vivo visualization of brain white matter tracts and assessment of the structural integrity of their constituent axons. In the meantime this technique, which has found applications in numerous pathologies of central nervous system, has a number of significant limitations, and the main of them are the inability to adequately visualize the crossing fibers and the relatively low reproducibility of the results. Standardization of the data postprocessing algorithms, further upgrading of the magnetic resonance scanners and implementation of the alternative tractography methods have the potential of partially reducing of the current limitations.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. Π‘ΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΡ Π·Π½Π°Π½ΠΈΠΉ ΠΎ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ; Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ, ΠΊΠ°ΡΠ°ΡΡΠ΅ΠΉΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ
Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΠΈΡ
ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½ΠΎ 74 ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ (6 ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
, 68 Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΡ
), Π²ΡΡΠ΅Π΄ΡΠΈΡ
Π² ΡΠ²Π΅Ρ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 1986 ΠΏΠΎ 2021 Π³ΠΎΠ΄. ΠΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ ΡΠ°Π±ΠΎΡ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π΄Π΅ΡΡΡΠΈΠ»Π΅ΡΠΈΠ΅, 19 ΡΠ°Π±ΠΎΡ β Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 2016 ΠΏΠΎ 2021 Π³ΠΎΠ΄.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠ°ΡΡΠ΅ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ, ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎ-Π²Π·Π²Π΅ΡΠ΅Π½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ΅Π½Π·ΠΎΡΠ°, ΠΎΡΡΠ°ΠΆΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΈ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΡΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄Π°Π½Π½ΡΡ
Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ ΠΠ Π’, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠΊΠ°Π½Π΅ΠΉ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅. ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΈΡΠΈΠ½Ρ ΠΈΠΌΠ΅ΡΡΠΈΡ
ΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ ΠΠ Π’, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΠΏΡΠΈΠ΅ΠΌΡ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ ΡΡΠΈΡ
ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ ΠΌΡΠ»ΡΡΠΈΡΠ΅Π½Π·ΠΎΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ, Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½Π°Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ, Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½Π°Ρ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½Π°Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ, Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½Π°Ρ ΠΊΡΡΡΠΎΠ·ΠΈΡΠ½Π°Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ. ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΡΠ°ΠΏΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ (ΠΏΡΠ΅ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³, ΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³ ΠΈ ΠΏΠΎΡΡΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³). ΠΡΡΠ°ΠΆΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ Π°Π½Π°Π»ΠΈΠ·Ρ Π΄Π°Π½Π½ΡΡ
Π΄ΠΈΡΡΡΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ (ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°, Π°Π½Π°Π»ΠΈΠ· Π²ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° Π΄Π°Π½Π½ΡΡ
, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΡΡΠ°ΠΊΡΠΎΠ³ΡΠ°ΡΠΈΡ).ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½Π°Ρ ΡΡΠ°ΠΊΡΠΎΠ³ΡΠ°ΡΠΈΡ β ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΏΡΠΈΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠΉ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠΈΡ
ΠΏΡΡΠ΅ΠΉ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΈΡ
Π°ΠΊΡΠΎΠ½ΠΎΠ², Π½Π°ΡΠ΅Π΄ΡΠ°Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ
ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΡΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ΄ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
ΡΠ²Π»ΡΡΡΡΡ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠΉ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΠΈΠ²Π°ΡΡΠΈΡ
ΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠ°Ρ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ². Π‘ΡΠ°Π½Π΄Π°ΡΡΠΈΠ·Π°ΡΠΈΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΏΠΎΡΡΠΏΡΠΎΡΠ΅ΡΡΠΈΠ½Π³Π° Π΄Π°Π½Π½ΡΡ
, Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΡΡ
ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΎΠ² ΠΈ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΠ΅ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΡΠ°ΠΊΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ ΡΠΏΠΎΡΠΎΠ±Π½Ρ ΡΠ°ΡΡΠΈΡΠ½ΠΎ Π½ΠΈΠ²Π΅Π»ΠΈΡΠΎΠ²Π°ΡΡ ΠΈΠΌΠ΅ΡΡΠΈΠ΅ΡΡ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ
Π’Π΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²Π½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π½Π΅ΠΉΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ³Π΅Π½ΠΈΡΠΎΡΠ½ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΈΠ· ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΏΠ»ΡΡΠΈΠΏΠΎΡΠ΅Π½ΡΠ½ΡΡ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΏΡΠΈ ΠΎΡΡΡΠΎΠΌ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠ΅ Ρ ΠΊΡΡΡ
Aim. Neural progenitor cells (NPC) are used for the development of cell therapies of neurological diseases. Their stereotaxic transplantation in the middle cerebral artery occlusion (MCAO) model imitating ischemic stroke results in symptom aleviation. However, exploration of less invasive transplantation options is essential, because stereotaxic transplantation is a complex procedure and can be applied to humans only by vital indications in a specialized neurological ward. The aim of the present study was to evaluate the efficacy of cell therapy of the experimental ischemic stroke by the intra-arterial transplantation of NPC.Materials and methods. NPC for transplantation (IPSC-NPC) were derived by two-stage differentiation of cells of a stable line of human induced pluripotent stem cells. Stroke modeling in rats was carried out by transitory 90 min endovascular MCAO by a silicon-tipped filament. NPC were transplanted 24 hours after MCAO. Repetitive magnetic resonance tomography of experimental animals was made with the Bruker BioSpin ClinScan tomograph with 7 Tl magnetic field induction. Animal survival rate and neurological deficit (using mNSS standard stroke severity scale) were evaluated at the 1st (before IPSC-NPC transplantation), 7th and 14th day after transplantation. Histological studies were carried out following standard protocols.Results. Intra-arterial transplantation of 7 Γ 105 IPSC-NPC in 1 ml at a constant 100 l/min rate in case of secured blood flow through the internal carotid artery did not cause brain capillary embolism, additional cytotoxic brain tissue edemas or other complications, while inducing increase of animal survival rate and enhanced revert of the neurological deficit. IPSC-NPC accumulation in brain after intra-arterial infusion was demonstrated. Some cells interacted with the capillary endothelium and probably penetrated through the blood-brain barrier.Conclusion. Therapeutic efficacy of the systemic, intra-arterial administration of NPC in ischemic stroke has been experimentally proven. A method of secure intra-arterial infusion of cell material into the internal carotid artery middle in rats has been developed and tested.Π¦Π΅Π»Ρ. ΠΠ΅ΠΉΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΠ³Π΅Π½ΠΈΡΠΎΡΠ½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ (ΠΠΠ) ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠΡ
ΡΡΠ΅ΡΠ΅ΠΎΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΌΠΎΠ·Π³ ΠΊΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΈΠΌΠΈΡΠΈΡΡΡΡΠ΅ΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΡΠ»ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΎΠΊΠΊΠ»ΡΠ·ΠΈΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ (ΠΠ‘ΠΠ) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±Π»Π΅Π³ΡΠ΅Π½ΠΈΡ ΡΠΈΠΌΠΏΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠ΅ΡΠ΅ΠΎΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΠΈ Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅ ΠΏΠΎ ΠΆΠΈΠ·Π½Π΅Π½Π½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌ, ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠ΅Π½Π΅Π΅ ΡΡΠ°Π²ΠΌΠ°ΡΠΈΡΠ½ΡΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ. Π¦Π΅Π»Ρ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ β ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠ»ΡΡΠ° ΠΏΡΡΠ΅ΠΌ Π²Π½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΠ Π΄Π»Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ (ΠΠΠ‘Π-ΠΠΠ) ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΏΡΡΠ΅ΠΌ Π΄Π²ΡΡ
ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΠΎΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠ»ΡΡΠΈΠΏΠΎΡΠ΅Π½ΡΠ½ΡΡ
ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΡΠ»ΡΡΠ° Ρ ΠΊΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΡΠ°Π½Π·ΠΈΡΠΎΡΠ½ΠΎΠΉ (90 ΠΌΠΈΠ½) ΡΠ½Π΄ΠΎΠ²Π°ΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΠ‘ΠΠ ΡΠΈΠ»Π°ΠΌΠ΅Π½ΡΠΎΠΌ Ρ ΡΠΈΠ»ΠΈΠΊΠΎΠ½ΠΎΠ²ΡΠΌ Π½Π°ΠΊΠΎΠ½Π΅ΡΠ½ΠΈΠΊΠΎΠΌ. ΠΠ½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ ΠΠΠ Π²ΡΠΏΠΎΠ»Π½ΡΠ»Π°ΡΡ ΡΠ΅ΡΠ΅Π· 24 ΡΠ°ΡΠ° ΠΏΠΎΡΠ»Π΅ ΠΠ‘ΠΠ. ΠΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π½Π° ΠΠ -ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ΅ ClinScan ΡΠΈΡΠΌΡ Bruker BioSpin Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ΅ΠΉ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ 7 Π’Π». ΠΠ° 1 (Π΄ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ‘Π-ΠΠΠ), 7 ΠΈ 14-Π΅ ΡΡΡΠΊΠΈ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈΡΡ Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΈ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄Π΅ΡΠΈΡΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΡΠΊΠ°Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΆΠ΅ΡΡΠΈ ΠΈΠ½ΡΡΠ»ΡΡΠ° mNSS Π΄Π»Ρ Π³ΡΡΠ·ΡΠ½ΠΎΠ². ΠΠΈΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ, ΠΏΠΎΠ»ΡΠ·ΡΡΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ ΠΠΠ‘Π-ΠΠΠ Π² Π΄ΠΎΠ·Π΅ 7 Γ 105 ΠΠΠ Π² 1 ΠΌΠ» Ρ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ100 ΠΌΠΊΠ»/ΠΌΠΈΠ½ ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° ΠΏΠΎ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠΎΠ½Π½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ Π½Π΅ Π²ΡΠ·ΡΠ²Π°Π»Π° ΡΠΌΠ±ΠΎΠ»ΠΈΠΈ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠΎΠ² ΠΌΠΎΠ·Π³Π°, ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
Π·ΠΎΠ½ ΡΠΈΡΠΎΡΠΎΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ΅ΠΊΠ° Π²Π΅ΡΠ΅ΡΡΠ²Π° Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΠΌΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΈ Π±ΠΎΠ»Π΅Π΅ Π±ΡΡΡΡΠΎΠΌΡ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°ΡΡΡΠ°. ΠΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ ΠΠΠ‘Π-ΠΠΠ Π² ΠΌΠΎΠ·Π³Π΅ ΠΏΠΎΡΠ»Π΅ ΠΈΡ
Π²Π½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ½ΡΡΠ·ΠΈΠΈ. Π§Π°ΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°Π»Π° Ρ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ΅ΠΌ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠΎΠ² ΠΈ, Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΡΠΏΠΎΡΠΎΠ±Π½Π° ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡ ΡΠ΅ΡΠ΅Π· ΠΠΠ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΠΠ ΠΏΡΠΈ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠ΅ ΠΏΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠΉ, Π²Π½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ. ΠΡΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ ΠΌΠ΅ΡΠΎΠ΄ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠΉ Π²Π½ΡΡΡΠΈΠ°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ½ΡΡΠ·ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π² Π±Π°ΡΡΠ΅ΠΉΠ½ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠΎΠ½Π½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ Ρ ΠΊΡΡΡ
Combined Cell Therapy in the Treatment of Neurological Disorders
Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy). This review summarizes the results of combined cell therapy of neurological pathologies reported up to this point. The number of papers describing experimental studies or clinical trials addressing this subject is still limited. However, its successful application to the treatment of neurological pathologies including stroke, spinal cord injury, neurodegenerative diseases, Duchenne muscular dystrophy, and retinal degeneration has been reported in both experimental and clinical studies. The advantages of combined cell therapy can be realized by simple summation of beneficial effects of different cells. Alternatively, one kind of cells can support the survival and functioning of the other by enhancing the formation of optimum environment or immunomodulation. No significant adverse events were reported. Combined cell therapy is a promising approach for the treatment of neurological disorders, but further research needs to be conducted
On the proton radiography of magnetic fields in targets irradiated by intense picosecond laser pulses
Proton radiography is a common diagnostic technique in laser-driven magnetic field generation studies. It is based on measuring proton beam deflection in electromagnetic fields induced around the target with the help of radiochromic film stacks. Unraveling information recorded in experimental radiographs and extracting the field profiles is not always a straightforward task. In this paper, some aspects of data analysis by reproducing experimental radiographs in numerical simulations are described. The approach allows determining the field strength and structure in the target area for various target geometries
Therapeutic efficacy of intra-arterial administration of induced pluripotent stem cells-derived neural progenitor cells in acute experimental ischemic stroke in rats
Aim. Neural progenitor cells (NPC) are used for the development of cell therapies of neurological diseases. Their stereotaxic transplantation in the middle cerebral artery occlusion (MCAO) model imitating ischemic stroke results in symptom aleviation. However, exploration of less invasive transplantation options is essential, because stereotaxic transplantation is a complex procedure and can be applied to humans only by vital indications in a specialized neurological ward. The aim of the present study was to evaluate the efficacy of cell therapy of the experimental ischemic stroke by the intra-arterial transplantation of NPC.Materials and methods. NPC for transplantation (IPSC-NPC) were derived by two-stage differentiation of cells of a stable line of human induced pluripotent stem cells. Stroke modeling in rats was carried out by transitory 90 min endovascular MCAO by a silicon-tipped filament. NPC were transplanted 24 hours after MCAO. Repetitive magnetic resonance tomography of experimental animals was made with the Bruker BioSpin ClinScan tomograph with 7 Tl magnetic field induction. Animal survival rate and neurological deficit (using mNSS standard stroke severity scale) were evaluated at the 1st (before IPSC-NPC transplantation), 7th and 14th day after transplantation. Histological studies were carried out following standard protocols.Results. Intra-arterial transplantation of 7 Γ 105 IPSC-NPC in 1 ml at a constant 100 l/min rate in case of secured blood flow through the internal carotid artery did not cause brain capillary embolism, additional cytotoxic brain tissue edemas or other complications, while inducing increase of animal survival rate and enhanced revert of the neurological deficit. IPSC-NPC accumulation in brain after intra-arterial infusion was demonstrated. Some cells interacted with the capillary endothelium and probably penetrated through the blood-brain barrier.Conclusion. Therapeutic efficacy of the systemic, intra-arterial administration of NPC in ischemic stroke has been experimentally proven. A method of secure intra-arterial infusion of cell material into the internal carotid artery middle in rats has been developed and tested
The Impact of Cerebral Perfusion on Mesenchymal Stem Cells Distribution after Intra-Arterial Transplantation: A Quantitative MR Study
Intra-arterial (IA) mesenchymal stem cells (MSCs) transplantation providing targeted cell delivery to brain tissue is a promising approach to the treatment of neurological disorders, including stroke. Factors determining cell distribution after IA administration have not been fully elucidated. Their decoding may contribute to the improvement of a transplantation technique and facilitate translation of stroke cell therapy into clinical practice. The goal of this work was to quantitatively assess the impact of brain tissue perfusion on the distribution of IA transplanted MSCs in rat brains. We performed a selective MR-perfusion study with bolus IA injection of gadolinium-based contrast agent and subsequent IA transplantation of MSCs in intact rats and rats with experimental stroke and evaluated the correlation between different perfusion parameters and cell distribution estimated by susceptibility weighted imaging (SWI) immediately after cell transplantation. The obtained results revealed a certain correlation between the distribution of IA transplanted MSCs and brain perfusion in both intact rats and rats with experimental stroke with the coefficient of determination up to 30%. It can be concluded that the distribution of MSCs after IA injection can be partially predicted based on cerebral perfusion data, but other factors requiring further investigation also have a significant impact on the fate of transplanted cells