20,103 research outputs found
Reverse and Forward Slow Shocks in the Solar Wind
Reverse and forward slow shocks in solar wind from Pioneer 6 space prob
Multiquark Hadrons
A number of candidate multiquark hadrons, i.e., particle resonances with
substructures that are more complex than the quark-antiquark mesons and
three-quark baryons that are prescribed in the textbooks, have recently been
observed. In this talk I present: some recent preliminary BESIII results on the
near-threshold behavior of sigma(e+e- --> Lambda Lambda-bar) that may or may
not be related to multiquark mesons in the light- and strange-quark sectors;
results from Belle and LHCb on the electrically charged, charmoniumlike
Z(4430)^+ --> pi^+ psi ' resonance that necessarily has a four-quark
substructure; and the recent LHCb discovery of the P_c(4380) and P_c(4450)
hidden-charm resonances seen as a complex structure in the J/psi p invariant
mass distribution for Lambda_b --> K^-J/psi p decays and necessarily have a
five-quark substructure and are, therefore, prominent candidates for pentaquark
baryons.Comment: 12 pages, 9 figures, summary of a talk presented at the 12th
Conference on Hypernuclear and Strange Particle Physics (HYP2015), September
7-12, 2015 Sendai, JAPAN. To appear in the JPS Conference proceeding
StochKit-FF: Efficient Systems Biology on Multicore Architectures
The stochastic modelling of biological systems is an informative, and in some
cases, very adequate technique, which may however result in being more
expensive than other modelling approaches, such as differential equations. We
present StochKit-FF, a parallel version of StochKit, a reference toolkit for
stochastic simulations. StochKit-FF is based on the FastFlow programming
toolkit for multicores and exploits the novel concept of selective memory. We
experiment StochKit-FF on a model of HIV infection dynamics, with the aim of
extracting information from efficiently run experiments, here in terms of
average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag
The Color-Octet intrinsic charm in and decays
Color-octet mechanism for the decay B\to \eta^\prime X is proposed to explain
the large branching ratio of Br(B\to \eta^\prime X)\sim 1\times 10^{-3}
recently announced by CLEO. We argue that the inclusive \eta^\prime production
in B decays may dominantly come from the Cabbibo favored b\to (\bar c c)_8s
process where \bar c c pair is in a color-octet configuration, and followed by
the nonperturbative transition (\bar c c)_8\to \eta^\prime X. The color-octet
intrinsic charm component in the higher Fock states of \eta^\prime is crucial
and is induced by the strong coupling of \eta^\prime to gluons via QCD axial
anomaly.Comment: 9 pages, RevTex, 1 PS figur
A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging
Polarized protons have never been accelerated to more than about GeV. To
achieve polarized proton beams in RHIC (250GeV), HERA (820GeV), and the
TEVATRON (900GeV), ideas and techniques new to accelerator physics are needed.
In this publication we will stress an important aspect of very high energy
polarized proton beams, namely the fact that the equilibrium polarization
direction can vary substantially across the beam in the interaction region of a
high energy experiment when no countermeasure is taken. Such a divergence of
the polarization direction would not only diminish the average polarization
available to the particle physics experiment, but it would also make the
polarization involved in each collision analyzed in a detector strongly
dependent on the phase space position of the interacting particle. In order to
analyze and compensate this effect, methods for computing the equilibrium
polarization direction are needed. In this paper we introduce the method of
stroboscopic averaging, which computes this direction in a very efficient way.
Since only tracking data is needed, our method can be implemented easily in
existing spin tracking programs. Several examples demonstrate the importance of
the spin divergence and the applicability of stroboscopic averaging.Comment: 39 page
Electromagnetic energy and energy flows in photonic crystals made of arrays of parallel dielectric cylinders
We consider the electromagnetic propagation in two-dimensional photonic
crystals, formed by parallel dielectric cylinders embedded a uniform medium.
The frequency band structure is computed using the standard plane-wave
expansion method, and the corresponding eigne-modes are obtained subsequently.
The optical flows of the eigen-modes are calculated by a direct computation
approach, and several averaging schemes of the energy current are discussed.
The results are compared to those obtained by the usual approach that employs
the group velocity calculation. We consider both the case in which the
frequency lies within passing band and the situation in which the frequency is
in the range of a partial bandgap. The agreements and discrepancies between
various averaging schemes and the group velocity approach are discussed in
detail. The results indicate the group velocity can be obtained by appropriate
averaging method.Comment: 23 pages, 5 figure
Documentation of the GLAS fourth order general circulation model. Volume 1: Model documentation
The volume 1, of a 3 volume technical memoranda which contains a documentation of the GLAS Fourth Order General Circulation Model is presented. Volume 1 contains the documentation, description of the stratospheric/tropospheric extension, user's guide, climatological boundary data, and some climate simulation studies
Documentation of the GLAS fourth order general calculation model. Volume 3: Vectorized code for the Cyber 205
Volume 3 of a 3-volume technical memoranda which contains documentation of the GLAS fourth order genera circulation model is presented. The volume contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A dictionary of FORTRAN variables used in the Scalar Version, and listings of the FORTRAN Code compiled with the C-option, are included. Cross reference maps of local variables are included for each subroutine
Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code
Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined
Dynamics of a single exciton in strongly correlated bilayers
We formulated an effective theory for a single interlayer exciton in a
bilayer quantum antiferromagnet, in the limit that the holon and doublon are
strongly bound onto one interlayer rung by the Coulomb force. Upon using a rung
linear spin wave approximation of the bilayer Heisenberg model, we calculated
the spectral function of the exciton for a wide range of the interlayer
Heisenberg coupling \alpha=J_{\perp}/Jz. In the disordered phase at large
\alpha, a coherent quasiparticle peak appears representing free motion of the
exciton in a spin singlet background. In the N\'{e}el phase, which applies to
more realistic model parameters, a ladder spectrum arises due to Ising
confinement of the exciton. The exciton spectrum is visible in measurements of
the dielectric function, such as c-axis optical conductivity measurements.Comment: 28 pages, 12 figure
- …