45 research outputs found

    Mott gap excitations in twin-free YBa2Cu3O7-d (Tc = 93 K) studied by RIXS

    Get PDF
    Mott gap excitations in the high-Tc superconductor of the optimal doped YBa2Cu3O7-d (Tc = 93 K) have been studied by the resonant inelastic x-ray scattering method. Anisotropic spectra in the ab-plane are observed in a twin-free crystal. The excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the b* direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of the momentum transfer. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed spectra by taking the different parameters of the on-site Coulomb energy. The fact of the Mott gap of the CuO chain site is much smaller than that of CuO2 plane site is observed for the first time

    Momentum Dependence of Charge Excitations in the Electron-Doped Superconductor Nd1.85Ce0.15CuO4: a RIXS Study

    Get PDF
    We report a resonant inelastic x-ray scattering (RIXS) study of charge excitations in the electron-doped high-Tc superconductor Nd1.85Ce0.15CuO4. The intraband and interband excitations across the Fermi energy are separated for the first time by tuning the experimental conditions properly to measure charge excitations at low energy. A dispersion relation with q-dependent width emerges clearly in the intraband excitation, while the intensity of the interband excitation is concentrated around 2 eV near the zone center. The experimental results are consistent with theoretical calculation of the RIXS spectra based on the Hubbard model

    Resonant inelastic x-ray scattering study of hole-doped manganites La1-xSrxMnO3 (x=0.2 and 0.4)

    Get PDF
    Electronic excitations near the Fermi energy in the hole doped manganese oxides (La1-xSrxMnO3, x=0.2 and 0.4) have been elucidated by using the resonant inelastic x-ray scattering (RIXS) method. A doping effect in the strongly correlated electron systems has been observed for the first time. The scattering spectra show that a salient peak appears in low energies indicating the persistence of the Mott gap. At the same time, the energy gap is partly filled by doping holes and the energy of the spectral weight shifts toward lower energies. The excitation spectra show little change in the momentum space as is in undoped LaMnO3, but the scattering intensities in the low energy excitations of x=0.2 are anisotropic as well as temperature dependent, which indicates a reminiscence of the orbital nature

    Polarization-analyzed resonant inelastic x-ray scattering of the orbital excitations in KCuF3

    Full text link
    We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of orbital excitations in KCuF3 . By performing the polarization analysis of the scattered photons, we disclose that the excitation between the eg orbitals and the excitations from t2g to eg exhibit distinct polarization dependence. The polarization dependence of the respective excitations is interpreted based on a phenomenological consideration of the symmetry of the RIXS process that yields a necessary condition for observing the excitations. In addition, we show that the orbital excitations are dispersionless within our experimental resolution.Comment: 5 pages, 3 figure

    Momentum-resolved charge excitations in high-Tc cuprates studied by resonant inelastic x-ray scattering

    Full text link
    We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in undoped insulators is found to commonly show a larger dispersion along the [pi,pi] direction than the [pi,0] direction. On the other hand, the resonance condition displays material dependence. Upon hole doping, the dispersion of the Mott gap excitation becomes weaker and an intraband excitation appears as a continuum intensity below the gap at the same time. In the case of electron doping, the Mott gap excitation is prominent at the zone center and a dispersive intraband excitation is observed at finite momentum transfer

    Suppression of HBV by Tenofovir in HBV/HIV coinfected patients : a systematic review and meta-analysis

    Get PDF
    Background: Hepatitis B coinfection is common in HIV-positive individuals and as antiretroviral therapy has made death due to AIDS less common, hepatitis has become increasingly important. Several drugs are available to treat hepatitis B. The most potent and the one with the lowest risk of resistance appears to be tenofovir (TDF). However there are several questions that remain unanswered regarding the use of TDF, including the proportion of patients that achieves suppression of HBV viral load and over what time, whether suppression is durable and whether prior treatment with other HBV-active drugs such as lamivudine, compromises the efficacy of TDF due to possible selection of resistant HBV strains. Methods: A systematic review and meta-analysis following PRISMA guidelines and using multilevel mixed effects logistic regression, stratified by prior and/or concomitant use of lamivudine and/or emtricitabine. Results: Data was available from 23 studies including 550 HBV/HIV coinfected patients treated with TDF. Follow up was for up to seven years but to ensure sufficient power the data analyses were limited to three years. The overall proportion achieving suppression of HBV replication was 57.4%, 79.0% and 85.6% at one, two and three years, respectively. No effect of prior or concomitant 3TC/FTC was shown. Virological rebound on TDF treatment was rare. Interpretation: TDF suppresses HBV to undetectable levels in the majority of HBV/HIV coinfected patients with the proportion fully suppressed continuing to increase during continuous treatment. Prior treatment with 3TC/FTC does not compromise efficacy of TDF treatment. The use of combination treatment with 3TC/FTC offers no significant benefit over TDF alone

    Ligand-hole localization in oxides with unusual valence Fe

    Get PDF
    Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes
    corecore