21 research outputs found

    Identification and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine

    Get PDF
    Bois noir, a disease of the grapevine yellows complex, is associated with 'Candidatus Phytoplasma solani' and transmitted to grapevines in open fields by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During field activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identified according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confinis) are alternative vectors of 'Candidatus Phytoplasma solani' to grapevines. These novel findings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management

    Rubbery taproot disease of sugar beet in Serbia associated with 'Candidatus phytoplasma solani'

    Get PDF
    Rubbery taproot disease (RTD) of sugar beet was observed in Serbia for the first time in the 1960s. The disease was already described in neighboring Bulgaria and Romania at the time but it was associated with abiotic factors. In this study on RTD of sugar beet in its main growing area of Serbia, we provide evidence of the association between 'Candidatus Phytoplasma solani' (stolbur phytoplasma) infection and the occurrence of typical RTD symptomatology. 'Ca. P. solani' was identified by PCR and the sequence analyses of 16S ribosomal RNA, tuf, secY, and stamp genes. In contrast, the causative agent of the syndrome “basses richesses” of sugar beet-namely, 'Ca. Arsenophonus phytopathogenicus'-was not detected. Sequence analysis of the stolbur strain's tuf gene confirmed a previously reported and a new, distinct tuf stolbur genotype (named 'tuf d') that is prevalent in sugar beet. The sequence signatures of the tuf gene as well as the one of stamp both correlate with the epidemiological cycle and reservoir plant host. This study provides knowledge that, for the first time, enables the differentiation of stolbur strains associated with RTD of sugar beet from closely related strains, thereby providing necessary information for further epidemiological work seeking to identify insect vectors and reservoir plant hosts. The results of this study indicate that there are differences in hybrid susceptibility. Clarifying the etiology of RTD as a long-known and economically important disease is certainly the first step toward disease management in Serbia and neighboring countries.This is the peer reviewed version of the following article: Ćurčić Ž., Stepanović J., Zübert C., Taški-Ajduković K., Kosovac A., Rekanović E., Kube M., Duduk B. Rubbery taproot disease of sugar beet in Serbia associated with 'Candidatus phytoplasma solani'. Plant Disease 2021, 105 (2), 255 – 263. [https://doi.org/10.1094/PDIS-07-20-1602-RE]

    Association of the NOD2 genotype with bacterial translocation via altered cell-cell contacts in Crohn's disease patients

    Full text link
    BACKGROUND: Recent insights into the pathogenesis of Crohn's disease (CD) point to an important role of the mucosal barrier and intestinal microflora that may induce a chronic inflammation after crossing the intestinal barrier. The first detected susceptibility gene for CD, NOD2, is a pattern recognition receptor (PRR) for the recognition of the bacterial cell wall component muramyldipeptide (MDP). Binding of MDP to NOD2 is followed by activation of proinflammatory pathways mainly regulated by nuclear factor kappa B (NF-kappaB). In this study we investigated whether impaired recognition of MDP via NOD2 variants is associated with increased bacterial translocation across the epithelial barrier and whether this is followed by increased or decreased NF-kappaB activation. METHODS: NOD2 variants were analyzed in 36 CD patients and 30 controls. Endotoxin was stained by immunohistochemistry in 30 intestinal biopsies from patients carrying NOD2 variants (NOD2-mut) or being NOD2 wildtype (WT). Junctional proteins were visualized by immunofluorescence and quantified by Western blotting. NF-kappaB activation was analyzed by immunohistochemistry in specimens from NOD2-WT and NOD2-mut CD and control patients. RESULTS: We demonstrated the increased presence of endotoxin in the mucosal lamina propria of CD patients carrying NOD2 variants. This was associated with an altered composition of epithelial cell-cell contacts. Patients carrying NOD2 variants displayed increased NF-kappaB activation in the mucosa. CONCLUSIONS: This study for the first time demonstrates that translocation of luminal bacteria and/or bacterial products into the intestinal mucosa is increased in patients carrying NOD2 variants, leading to higher activation of proinflammatory signaling cascades

    MIP-3α expression in macrophages is NOD dependent

    Get PDF
    Background: The first identified susceptibility gene for Crohn's disease, NOD2, acts as a sensor for the bacterial-wall peptidoglycan fragment muramyl dipeptide (MDP) and activates the transcription factor nuclear factor-κB (NF-κB). Upon NF-κB activation, intestinal macrophages (IMACs) induce expression of macrophage inflammatory protein (MIP)-3α to attract memory T lymphocytes. We therefore investigated the influence of NOD2 ligation of IMAC differentiation and functional MIP-3α induction. Methods: Human embryonal kidney HEK293 cells were transfected with NOD2 wild-type (NOD2(WT)) and the NOD2 SNP13 variant (NOD2(L1007fsinsC)) and stimulated with MDP. Recruitment of CD45R0(+) and Th17 cells was determined by immunohistochemistry. Results: Endogenous NOD2 stimulation was followed by a dose-dependent increase in MIP-3α secretion in MONO-MAC-6 (MM6) cells. MIP-3α mRNA was also significantly (* p < 0.05) induced in HEK293 transfected with NOD2(WT) via MDP ligation. In vivo cell-cell contacts between IMACs and CD45R0(+) memory T cells as well as recruitment of Th17 cells in patients of NOD2 variants were unchanged as compared to wild-type patients. Conclusion: Our data demonstrate a dose-dependent increase in MIP-3α secretion in the human myeloid cell line MM6 upon MDP. However, MIP-3α-driven recruitment of Th17 cells or CD45R0(+) memory T lymphocytes is not affected in patients carrying heterozygous NOD2 variants

    Supplementary Material for: Downregulation of the Ubiquitin-Proteasome System in Normal Colonic Macrophages and Reinduction in Inflammatory Bowel Disease

    No full text
    <b><i>Background:</i></b> In normal mucosa, intestinal lamina propria macrophages (IMACs) maintain tolerance against food antigens and the commensal bacterial flora. Several mechanisms have been identified that mediate tolerance. The ubiquitin-proteasome system (UPS) is a large multiprotein complex that degrades cellular proteins. As the UPS may modulate immune functions of IMACs, we performed a detailed investigation of UPS expression and function under normal conditions and in cells derived from patients suffering from inflammatory bowel disease (IBD).<b><i> Methods:</i></b> IMACs were isolated from intestinal mucosa. mRNA expression of macrophages differentiated in vitro (i.v. MACs) and IMACs was compared by Affymetrix® oligonucleotide arrays. Quantitative Taqman-PCR was performed on five exemplary proteasomal and five ubiquitinylation genes each. Proteins were analyzed by immunohistochemistry and Western blotting. Proteasome function was assessed by a fluorimetric test. <b><i>Results:</i></b> Affymetrix analysis showed downregulation of mRNA expression of almost all represented proteasomal and of 22 ubiquitination-associated genes in IMACs as compared to i.v. MACs and monocytes. By quantitative PCR, up to tenfold higher mRNA expression of 10 exemplary genes of the UPS (UBE2A, UBE2D2, UBE2L6, USP14, UBB and ATPase2, β2, β5, β2i/MECL-1, β5i/LMP7) was demonstrated in i.v. MACs as compared to IMACs. Immunohistochemistry and Western blots confirmed these findings in intestinal mucosa of controls and patients suffering from diverticulitis. In contrast, a significant increase in protein amounts was found in mucosa of patients with IBD. <b><i>Conclusion:</i></b> Reduced expression of subunits of the UPS in IMACs of normal mucosa supports the concept of the presence of a nonreactive, anergic macrophage phenotype in the gut under normal conditions. Reinduction in IMACs of IBD mucosa reflects activated IMACs which can present antigenic peptides and thus support inflammation

    Supplementary Material for: MIP-3α Expression in Macrophages Is NOD Dependent

    No full text
    <i>Background:</i> The first identified susceptibility gene for Crohn’s disease, <i>NOD2</i>, acts as a sensor for the bacterial-wall peptidoglycan fragment muramyl dipeptide (MDP) and activates the transcription factor nuclear factor-ĸB (NF-ĸB). Upon NF-ĸB activation, intestinal macrophages (IMACs) induce expression of macrophage inflammatory protein (MIP)-3α to attract memory T lymphocytes. We therefore investigated the influence of NOD2 ligation of IMAC differentiation and functional MIP-3α induction. <i>Methods:</i> Human embryonal kidney HEK293 cells were transfected with NOD2 wild-type (NOD2<sup>WT</sup>) and the NOD2 SNP13 variant (NOD2<sup>L1007fsinsC</sup>) and stimulated with MDP. Recruitment of CD45R0<sup>+</sup> and Th17 cells was determined by immunohistochemistry. <i>Results:</i> Endogenous NOD2 stimulation was followed by a dose-dependent increase in MIP-3α secretion in MONO-MAC-6 (MM6) cells. MIP-3α mRNA was also significantly (* p < 0.05) induced in HEK293 transfected with NOD2<sup>WT</sup> via MDP ligation. In vivo cell-cell contacts between IMACs and CD45R0<sup>+</sup> memory T cells as well as recruitment of Th17 cells in patients of NOD2 variants were unchanged as compared to wild-type patients. <i>Conclusion:</i> Our data demonstrate a dose-dependent increase in MIP-3α secretion in the human myeloid cell line MM6 upon MDP. However, MIP-3α-driven recruitment of Th17 cells or CD45R0<sup>+</sup> memory T lymphocytes is not affected in patients carrying heterozygous NOD2 variants

    Vitex agnus-castus cannot be used as trap plant for the vector Hyalesthes obsoletus to prevent infections by \u2018Candidatus Phytoplasma solani\u2019 in northern Italian vineyards: Experimental evidence

    Get PDF
    Bois noir (BN), the most prevalent disease of the grapevine yellows complex, causes considerable yield loss in vineyards. BN is associated with phytoplasma strains of the species 'Candidatus Phytoplasma solani' (taxonomic subgroup 16SrXII-A). In Europe, the BN phytoplasma is transmitted to grapevine mainly by Hyalesthes obsoletus, a polyphagous cixiid completing its life cycle on stinging nettle and field bindweed. As a result of the complexity of BN epidemiology, no effective control strategies have been developed. In previous studies conducted in the eastern Mediterranean coast of Israel, chaste tree (Vitex agnus-castus) was found to be the preferred host plant of H. obsoletus but did not harbour BN phytoplasma. Thus, a 'push and pull' strategy was suggested based on the fact that chaste tree plants located at vineyard borders was an effective trap plant for H. obsoletus adults. However, in other studies carried out in the eastern Adriatic coast of Montenegro, chaste tree was found to be a key source plant for BN phytoplasma transmission to grapevine. This study aimed to investigate (i) the interaction between chaste tree and H. obsoletus through survival, attractiveness and oviposition experiments conducted comparing the behaviour of H. obsoletus in chaste tree versus stinging nettle and grapevine and (ii) the capability of chaste tree to harbor 'Ca. P. solani' in northern Italy through transmission trials. H. obsoletus adults were found to survive on chaste tree and grapevine over a 1 week period and prefer chaste tree to grapevine. Moreover, H. obsoletus produced eggs and overwintered as nymphs on chaste tree, even if at a lesser extent than on stinging nettle. H. obsoletus originating from nettle was found able to transmit 'Ca. P. solani' to chaste tree (2 plants of 16 were found infected by the BN phytoplasma strain St5 identified in H. obsoletus specimens). These results increased our knowledge about the role of Vitex agnus-castus as host plant of H. obsoletus and BN phytoplasma in northern Italy and do not recommend considering chaste tree as trap plant at vineyard borders
    corecore