60 research outputs found

    Empirical investigation to explore potential gains from the amalgamation of Phase Changing Materials (PCMs) and wood shavings

    Get PDF
    The reduction of gained heat, heat peak shifting and the mitigation of air temperature fluctuations are some desirable properties that are sought after in any thermal insulation system. It cannot be overstated that these factors, in addition to others, govern the performance of such systems thus their effect on indoor ambient conditions. The effect of such systems extends also to Heating, Ventilation and Air-conditioning (HVAC) systems that are set up to operate optimally in certain conditions. Where literature shows that PCMs and natural materials such as wood-shavings can provide efficient passive insulation for buildings, it is evident that such approaches utilise methods that are of a degree of intricacy which requires specialist knowledge and complex techniques, such as micro-encapsulation for instance. With technical and economic aspects in mind, an amalgam of PCM and wood-shavings has been created for the purpose of being utilised as a feasible thermal insulation. The amalgamation was performed in the simplest of methods, through submerging the wood shavings in PCM. An experimental procedure was devised to test the thermal performance of the amalgam and compare this to the performance of the same un-amalgamated materials. Comparative analysis revealed that no significant thermal gains would be expected from such amalgamation. However, significant reduction in the total weight of the insulation system would be achieved that, in this case, shown to be up to 20.94%. Thus, further reducing possible strains on structural elements due to the application of insulation on buildings. This can be especially beneficial in vernacular architectural approaches where considerably large amounts and thicknesses of insulations are used. In addition, cost reduction could be attained as wood shavings are significantly cheaper compared to the cost of PCMs

    Vliv velikosti krystalitů TiO2 na jeho fotokatalytickou reaktivitu

    No full text
    The aim of this work is to assess the effect of particle size on photocatalytic reactivity of TiO2 exemplified by the photoreduction of CO2 by water. As the particle size decreased higher methane yields over the TiO2 nanoparticles under the illumination of the light were obtained. Results were compared with yields of mathane over Degussa P25, which in non-porous. We demonstrated that photoreactivity of Degussa P25 was lower than all tested TiO2 nanoparticles

    Photocatalytic H<inf>2</inf> generation from aqueous ammonia solution using TiO<inf>2</inf> nanowires-intercalated reduced graphene oxide composite membrane under low power UV light

    Full text link
    We report for the first time the nitrogen doping of reduced graphene oxide (rGO) and TiO2 nanowires (NWs) when TiO2 NWs intercalated rGO membranes were immersed in ammonia aqueous solution under 8 W 254 nm UV irradiation. Such nitrogen-doped rGO/TiO2 NWs photocatalytic membrane produced H2 at a rate of 208 μmol h−1 g−1 under 8 W 254 nm UV irradiation, which is more than 14 times higher than the yield of the TiO2-P25 and 30-fold higher than TiO2 NWs alone under the same condition. Our study demonstrates a new synthesis route for doping nitrogen in rGO and TiO2, as well as the preliminary feasibility of hydrogen extraction from ammonia-containing wastewater with such a low-cost recyclable photocatalyst. In addition, the study illustrates the complexity of photocatalysis of ammonia aqueous solution, which involves multiple reactions in concurrence

    Photoelectrochemical, photocatalytic and electrocatalytic behavior of titania films modified by nitrogen and platinum species

    No full text
    Co-doping of titania by N and Pt species was employed to tune the electronic structure and enhance the electrocatalytic and photocatalytic activity of the films. Herein, the different approaches of synthesis procedure of Pt- and Pt,N–TiO2 films were used to investigate their effect on the platinum oxidation states. The resulting different species of Pt led to the changes in the electronic structure of TiO2, with consequent bandgap narrowing, anodic shift of the flat band potential, and cathodic shift of the valence band The quantum yield efficiency was correlated with Pt0 atomic content and the relative atomic content of Ptn+–O–Ti fragments, whereas its decrease for some samples can be caused by the presence of N and Ptn+. The highest response for N2O photocatalytic decomposition was observed over Pt,N–TiO2 films. The presence of metal and non-metal species in TiO2 structure resulted in synergistic effect including (1) inhibition of recombination of the electrons and holes and (2) narrowing of the bandgap. Electrocatalytic properties in hydrogen and oxygen evolution reactions were improved by Pt doping. The formed Pt2+–O–Ti bonds rather than Pt nanoparticles are suggested to be responsible for the highest electrocatalytic activity. The additional UV exposure of the electrodes led to Pt NPs aggregation as a result of photodeposition of Pt ions. The mechanism of the Pt2+ photoreduction in TiO2 structure is proposed.Peer reviewe
    corecore