357 research outputs found
Towards quantitative prediction of proteasomal digestion patterns of proteins
We discuss the problem of proteasomal degradation of proteins. Though
proteasomes are important for all aspects of the cellular metabolism, some
details of the physical mechanism of the process remain unknown. We introduce a
stochastic model of the proteasomal degradation of proteins, which accounts for
the protein translocation and the topology of the positioning of cleavage
centers of a proteasome from first principles. For this model we develop the
mathematical description based on a master-equation and techniques for
reconstruction of the cleavage specificity inherent to proteins and the
proteasomal translocation rates, which are a property of the proteasome specie,
from mass spectroscopy data on digestion patterns. With these properties
determined, one can quantitatively predict digestion patterns for new
experimental set-ups. Additionally we design an experimental set-up for a
synthetic polypeptide with a periodic sequence of amino acids, which enables
especially reliable determination of translocation rates.Comment: 14 pages, 4 figures, submitted to J. Stat. Mech. (Special issue for
proceedings of 5th Intl. Conf. on Unsolved Problems on Noise and Fluctuations
in Physics, Biology & High Technology, Lyon (France), June 2-6, 2008
The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing
MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209–217tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201–230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209–217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8+ T cell stimulation in vitro similar to the wtgp100209–217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8+ T cell response also towards N-terminally extended versions of the minimal epitope
The 20S Proteasome Splicing Activity Discovered by SpliceMet
The identification of proteasome-generated spliced peptides (PSP) revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL) thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS). For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected
Preventing tumor escape by targeting a post-proteasomal trimming independent epitope
Adoptive T cell therapy (ATT) can achieve regression of large tumors in mice and humans; however, tumors frequently recur. High target peptide-major histocompatibility complex-I (pMHC) affinity and T cell receptor (TCR)-pMHC affinity are thought to be critical to preventing relapse. Here, we show that targeting two epitopes of the same antigen in the same cancer cells via monospecific T cells, which have similar pMHC and pMHC-TCR affinity, results in eradication of large, established tumors when targeting the apparently subdominant but not the dominant epitope. Only the escape but not the rejection epitope required postproteasomal trimming, which was regulated by IFN-gamma, allowing IFN-gamma-unresponsive cancer variants to evade. The data describe a novel immune escape mechanism and better define suitable target epitopes for ATT
- …