2,905 research outputs found

    Relaxation of surface charge on rotating dielectric spheres: Implications on dynamic electrorheological effects

    Full text link
    We have examined the effect of an oscillatory rotation of a polarized dielectric particle. The rotational motion leads to a re-distribution of the polarization charge on the surface of the particle. We show that the time averaged steady-state dipole moment is along the field direction, but its magnitude is reduced by a factor which depends on the angular velocity of rotation. As a result, the rotational motion of the particle reduces the electrorheological effect. We further assume that the relaxation of polarized charge is arised from a finite conductivity of the particle or host medium. We calculate the relaxation time based on the Maxwell-Wagner theory, suitably generalized to include the rotational motion. Analytic expressions for the reduction factor and the relaxation time are given and their dependence on the angular velocity of rotation will be discussed.Comment: Accepted for publications by Phys. Rev.

    Computer simulations of electrorheological fluids in the dipole-induced dipole model

    Full text link
    We have employed the multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid in which the suspended particles can have various sizes and different permittivites. The point-dipole (PD) approximation being routinely adopted in computer simulation of ER fluids is shown to err considerably when the particles approach and finally touch due to multipolar interactions. The PD approximation becomes even worse when the dielectric contrast between the particles and the host medium is large. From the results, we show that the dipole-induced-dipole (DID) model yields very good agreements with the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we have employed the DID model to simulate the athermal aggregation of particles in ER fluids both in uniaxial and rotating fields. We find that the aggregation time is significantly reduced. The DID model accounts for multipolar interaction partially and is simple to use in computer simulation of ER fluids.Comment: 22 pages, 7 figures, submitted to Phys. Rev.

    Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies

    Get PDF
    Atherosclerosis constitutes the underlying disease to the clinical manifestations of myocardial infarction, stroke, and gangrene. Despite the success of statins, prevention of clinical events of atherosclerosis remains a major challenge in current-day cardiology. Research into the inflammatory nature of atherosclerosis has led to improved mechanistic understanding of its pathogenesis and to the identification of novel therapeutic targets discussed in this review. Recent genetic and epidemiological data document shared pathologies of chronic inflammatory diseases and atherosclerosis. Anti-inflammatory treatment regimens used in these diseases, including tumor necrosis factor-α blockade, IL-1 receptor antagonism, and leukotriene blockade may be beneficial also in patients with coronary artery disease. Enhancing inherent atheroprotective immunity by expansion of regulatory T cells may emerge as a future therapeutic strategy. Immunization strategies directed against atherosclerosis-related antigens such as epitopes within the low-density lipoprotein particle have been extensively studied in animal models and may enter the clinical stage. Success of these novel therapies will be critically dependent on the adequate identification of patients and choice of appropriate clinical endpoint

    Nonlinear ER effects in an ac applied field

    Full text link
    The electric field used in most electrorheological (ER) experiments is usually quite high, and nonlinear ER effects have been theoretically predicted and experimentally measured recently. A direct method of measuring the nonlinear ER effects is to examine the frequency dependence of the same effects. For a sinusoidal applied field, we calculate the ac response which generally includes higher harmonics. In is work, we develop a multiple image formula, and calculate the total dipole moments of a pair of dielectric spheres, embedded in a nonlinear host. The higher harmonics due to the nonlinearity are calculated systematically.Comment: Presented at Conference on Computational Physics (CCP2000), held at Gold Coast, Australia from 3-8, December 200

    Calibration of a solid state nuclear track detector (SSNTD) with high detection threshold to search for rare events in cosmic rays

    Full text link
    We have investigated a commercially available polymer for its suitability as a solid state nuclear track detector (SSNTD). We identified that polymer to be polyethylene terephthalate (PET) and found that it has a higher detection threshold compared to many other widely used SSNTDs which makes this detector particularly suitable for rare event search in cosmic rays as it eliminates the dominant low Z background. Systematic studies were carried out to determine its charge response which is essential before any new material can be used as an SSNTD. In this paper we describe the charge response of PET to 129Xe, 78Kr and 49Ti ions from the REX-ISOLDE facility at CERN, present the calibration curve for PET and characterize it as a nuclear track detector

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure
    • …
    corecore