102 research outputs found
The intriguing evolutionary dynamics of plant mitochondrial DNA
The mitochondrial genome of plants is-in every respect and for yet unclear reasons-very different from the well-studied one of animals. Thanks to next-generation sequencing technologies, Davila et al. precisely characterized the role played by recombination and DNA repair in controlling mitochondrial variations in Arabidopsis thaliana, thus opening new perspectives on the long-term evolution of this intriguing genome
Effect of Pictorial Depth Cues, Binocular Disparity Cues and Motion Parallax Depth Cues on Lightness Perception in Three-Dimensional Virtual Scenes
Surface lightness perception is affected by scene interpretation. There is some experimental evidence that perceived lightness under bi-ocular viewing conditions is different from perceived lightness in actual scenes but there are also reports that viewing conditions have little or no effect on perceived color. We investigated how mixes of depth cues affect perception of lightness in three-dimensional rendered scenes containing strong gradients of illumination in depth.Observers viewed a virtual room (4 m width x 5 m height x 17.5 m depth) with checkerboard walls and floor. In four conditions, the room was presented with or without binocular disparity (BD) depth cues and with or without motion parallax (MP) depth cues. In all conditions, observers were asked to adjust the luminance of a comparison surface to match the lightness of test surfaces placed at seven different depths (8.5-17.5 m) in the scene. We estimated lightness versus depth profiles in all four depth cue conditions. Even when observers had only pictorial depth cues (no MP, no BD), they partially but significantly discounted the illumination gradient in judging lightness. Adding either MP or BD led to significantly greater discounting and both cues together produced the greatest discounting. The effects of MP and BD were approximately additive. BD had greater influence at near distances than far.These results suggest the surface lightness perception is modulated by three-dimensional perception/interpretation using pictorial, binocular-disparity, and motion-parallax cues additively. We propose a two-stage (2D and 3D) processing model for lightness perception
Physical properties of Centaur (60558) 174P/Echeclus from stellar occultations
The Centaur (60558) Echeclus was discovered on March 03, 2000, orbiting
between the orbits of Jupiter and Uranus. After exhibiting frequent outbursts,
it also received a comet designation, 174P. If the ejected material can be a
source of debris to form additional structures, studying the surroundings of an
active body like Echeclus can provide clues about the formation scenarios of
rings, jets, or dusty shells around small bodies. Stellar occultation is a
handy technique for this kind of investigation, as it can, from Earth-based
observations, detect small structures with low opacity around these objects.
Stellar occultation by Echeclus was predicted and observed in 2019, 2020, and
2021. We obtain upper detection limits of rings with widths larger than 0.5 km
and optical depth of = 0.02. These values are smaller than those of
Chariklo's main ring; in other words, a Chariklo-like ring would have been
detected. The occultation observed in 2020 provided two positive chords used to
derive the triaxial dimensions of Echeclus based on a 3D model and pole
orientation available in the literature. We obtained km, km, and km, resulting in an area-equivalent
radius of km. Using the projected limb at the occultation epoch
and the available absolute magnitude (), we
calculate an albedo of . Constraints on the
object's density and internal friction are also proposed.Comment: Corrected and typeset versio
Stellar occultations enable milliarcsecond astrometry for Trans-Neptunian objects and Centaurs
Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary
system formation, and their physical properties have invaluable information for
evolutionary theories. Stellar occultation is a ground-based method for
studying these small bodies and has presented exciting results. These
observations can provide precise profiles of the involved body, allowing an
accurate determination of its size and shape. The goal is to show that even
single-chord detections of TNOs allow us to measure their milliarcsecond
astrometric positions in the reference frame of the Gaia second data release
(DR2). Accurated ephemerides can then be generated, allowing predictions of
stellar occultations with much higher reliability. We analyzed data from
stellar occultations to obtain astrometric positions of the involved bodies.
The events published before the Gaia era were updated so that the Gaia DR2
catalog is the reference. Previously determined sizes were used to calculate
the position of the object center and its corresponding error with respect to
the detected chord and the International Celestial Reference System (ICRS)
propagated Gaia DR2 star position. We derive 37 precise astrometric positions
for 19 TNOs and 4 Centaurs. Twenty-one of these events are presented here for
the first time. Although about 68\% of our results are based on single-chord
detection, most have intrinsic precision at the submilliarcsecond level. Lower
limits on the diameter and shape constraints for a few bodies are also
presented as valuable byproducts. Using the Gaia DR2 catalog, we show that even
a single detection of a stellar occultation allows improving the object
ephemeris significantly, which in turn enables predicting a future stellar
occultation with high accuracy. Observational campaigns can be efficiently
organized with this help, and may provide a full physical characterization of
the involved object.Comment: 16 pages, 28 figures. The manuscript was accepted and is to be
publishe
Vandetanib (Zactima, ZD6474) Antagonizes ABCC1- and ABCG2-Mediated Multidrug Resistance by Inhibition of Their Transport Function
ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR). In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro.MDR cancer cells overexpressing ABCC1 or ABCG2 and their sensitive parental cell lines were used. MTT assay showed that vandetanib had moderate and almost equal-potent anti-proliferative activity in both sensitive parental and MDR cancer cells. Concomitant treatment of MDR cells with vandetanib and specific inhibitors of ABCC1 or ABCG2 did not alter their sensitivity to the former drug. On the other hand, clinically attainable but non-toxic doses of vandetanib were found to significantly enhance the sensitivity of MDR cancer cells to ABCC1 or ABCG2 substrate antitumor drugs. Flow cytometric analysis showed that vandetanib treatment significantly increase the intracellular accumulation of doxorubicin and rhodamine 123, substrates of ABCC1 and ABCG2 respectively, in a dose-dependent manner (P<0.05). However, no significant effect was shown in sensitive parental cell lines. Reverse transcription-PCR and Western blot analysis showed that vandetanib did not change the expression of ABCC1 and ABCG2 at both mRNA and protein levels. Furthermore, total and phosphorylated forms of AKT and ERK1/2 remained unchanged after vandetanib treatment in both sensitive and MDR cancer cells.Vandetanib is unlikely to be a substrate of ABCC1 or ABCG2. It overcomes ABCC1- and ABCG2-mediated drug resistance by inhibiting the transporter activity, independent of the blockade of AKT and ERK1/2 signal transduction pathways
A phase II study of amrubicin and carboplatin for previously untreated patients with extensive-disease small cell lung cancer
Background: Amrubicin is active in the treatment of extensive-disease small cell lung cancer (ED-SCLC), and carboplatin is an analogue of cisplatin with less non-hematological toxicity. Purpose: The purpose of this study was to determine the efficacy and toxicity of amrubicin and carboplatin combination chemotherapy for previously untreated patients with ED-SCLC. Patients and methods: Eligibility criteria were chemotherapy-naive ED-SCLC patients, performance status 0-1, age ?75, and adequate hematological, hepatic and renal function. Based on the phase I study, the patients received amrubicin 35 mg/m2 i.v. infusion on days 1, 2, and 3, and carboplatin AUC 5 i.v. infusion on day 1. Four cycles of chemotherapy were repeated every 3 weeks. Results: Thirty-five patients were enrolled, and 34 patients were eligible and assessable for response, toxicity, and survival. Patients\u27 characteristics were as follows: male/female = 26/8; performance status 0/1 = 4/30; median age (range) = 64 (41-75); stage IV = 34. Evaluation of responses was 6 complete response, 21 partial response, and 7 stable disease (response rate 79.4 %, 95 % CI 63.6-88.5 %). Grade 3 and 4 leukopenia, neutropenia, and thrombocytopenia occurred in 59, 82, and 26 %, respectively. There were no treatment-related deaths or pneumonitis. Three patients experienced hypotension as an amrubicin infusion reaction. The median progression-free survival time was 6.5 months. The median overall survival time and 1-, 2-, and 3-year survival rates were 15.6 months, and 63, 28, and 7 %, respectively. Conclusions: Amrubicin and carboplatin were effective and tolerable as chemotherapy for previously untreated patients with ED-SCLC. Further investigation of amrubicin and carboplatin is warranted
Physical properties of Centaur (60558) 174P/Echeclus from stellar occultations
peer reviewedThe Centaur (60558) Echeclus was discovered on 2000 March 03, orbiting between the orbits of Jupiter and Uranus. After exhibiting frequent outbursts, it also received a comet designation, 174P. If the ejected material can be a source of debris to form additional structures, studying the surroundings of an active body like Echeclus can provide clues about the formation scenarios of rings, jets, or dusty shells around small bodies. Stellar occultation is a handy technique for this kind of investigation, as it can, from Earth-based observations, detect small structures with low opacity around these objects. Stellar occultation by Echeclus was predicted and observed in 2019, 2020, and 2021. We obtain upper detection limits of rings with widths larger than 0.5 km and optical depth of τ = 0.02. These values are smaller than those of Chariklo's main ring; in other words, a Chariklo-like ring would have been detected. The occultation observed in 2020 provided two positive chords used to derive the triaxial dimensions of Echeclus based on a 3D model and pole orientation available in the literature. We obtained a = 37.0 ± 0.6 km, b = 28.4 ± 0.5 km, and c = 24.9 ± 0.4 km, resulting in an area-equivalent radius of 30.0 ± 0.5 km. Using the projected limb at the occultation epoch and the available absolute magnitude (Hv= 9.971 +- 0.031), we calculate an albedo of pv = 0.050 ± 0.003. Constraints on the object's density and internal friction are also proposed
- …