13 research outputs found

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis.

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intra-individual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intra-individual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    Mononuclear cell transcriptome changes associated with dimethyl fumarate in multiple sclerosis.

    Get PDF
    Objective To identify short-term changes in gene expression in peripheral blood mononuclear cells (PBMCs) associated with treatment response to dimethyl fumarate (DMF, Tecfidera) in patients with relapsing-remitting MS (RRMS). Methods Blood samples were collected from 24 patients with RRMS (median Expanded Disability Status Scale score, 2.0; range 1–7) at baseline, 6 weeks, and 15 months after the initiation of treatment with DMF (BG-12; Tecfidera). Seven healthy controls were also recruited, and blood samples were collected over the same time intervals. PBMCs were extracted from blood samples and sequenced using next-generation RNA sequencing. Treatment responders were defined using the composite outcome measure “no evidence of disease activity” (NEDA-4). Time-course and cross-sectional differential expression analyses were performed to identify transcriptomic markers of treatment response. Results Treatment responders (NEDA-4 positive, 8/24) over the 15-month period had 478 differentially expressed genes (DEGs) 6 weeks after the start of treatment. These were enriched for nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inhibition of nuclear factor κB (NFκB) pathway transcripts. For patients who showed signs of disease activity, there were no DEGs at 6 weeks relative to their (untreated) baseline. Contrasting transcriptomes expressed at 6 weeks with those at 15 months of treatment, 0 and 1,264 DEGs were found in the responder and nonresponder groups, respectively. Transcripts in the nonresponder group (NEDA-4 negative, 18/24) were enriched for T-cell signaling genes. Conclusion Short-term PBMC transcriptome changes reflecting activation of the Nrf2 and inhibition of NFκB pathways distinguish patients who subsequently show a medium-term treatment response with DMF. Relative stabilization of gene expression patterns may accompany treatment-associated suppression of disease activity
    corecore