38 research outputs found

    Genomic organization and alternative splicing of the human and mouse RPTPρ genes

    Get PDF
    BACKGROUND: Receptor protein tyrosine phosphatase rho (RPTPρ, gene symbol PTPRT) is a member of the type IIB RPTP family. These transmembrane molecules have been linked to signal transduction, cell adhesion and neurite extension. The extracellular segment contains MAM, Ig-like and fibronectin type III domains, and the intracellular segment contains two phosphatase domains. The human RPTPρ gene is located on chromosome 20q12-13.1, and the mouse gene is located on a syntenic region of chromosome 2. RPTPρ expression is restricted to the central nervous system. RESULTS: The cloning of the mouse cDNA, identification of alternatively spliced exons, detection of an 8 kb 3'-UTR, and the genomic organization of human and mouse RPTPρ genes are described. The two genes are comprised of at least 33 exons. Both RPTPρ genes span over 1 Mbp and are the largest RPTP genes characterized. Exons encoding the extracellular segment through the intracellular juxtamembrane 'wedge' region are widely spaced, with introns ranging from 9.7 to 303.7 kb. In contrast, exons encoding the two phosphatase domains are more tightly clustered, with 15 exons spanning ∌ 60 kb, and introns ranging in size from 0.6 kb to 13.1 kb. Phase 0 introns predominate in the intracellular, and phase 1 in the extracellular segment. CONCLUSIONS: We report the first genomic characterization of a RPTP type IIB gene. Alternatively spliced variants may result in different RPTPρ isoforms. Our findings suggest that RPTPρ extracellular and intracellular segments originated as separate modular proteins that fused into a single transmembrane molecule during a later evolutionary period

    Evaluation of Theils U: A NaĂŻve Forecast Application

    Full text link
    The reliability of any forecast needs to be tested effectively with an empirical data. Simple or complicated forecast methods have many a time failed subjected to empirical examination. There is no agreement among scholars as to which metric is the best for determining the best forecasting method. So this paper evaluates the basic of forecast techniques of predicting the future values and comparing its accuracy by Theil's U statistic. The predicted values were estimated by NaĂŻve's method and the errors are calculated to verify the accuracy of the forecasted values as well. The testing has been done with a set of fictitious data set which helps to explain the steps in establishing the accuracy of the projected model

    Surgical correction of astigmatism

    No full text

    Molecular markers for prostate cancer.

    No full text
    Item does not contain fulltextSerum PSA testing has been used for over 20 years as an aid in the diagnosis and management of prostate cancer. Although highly sensitive, it suffers from a lack of specificity, showing elevated serum levels in a variety of other conditions including prostatitis, benign prostate hyperplasia, and non-cancerous neoplasia. During this period, numerous serum protein analytes have been investigated as alternative and/or supplemental tests for PSA, however in general these analytes have likewise suffered from a lack of specificity, often showing serum elevations in other clinical presentations. More recently, molecular assays targeting prostate disease at the DNA or RNA level have been investigated for potential diagnostic and prognostic utility. With the aid of modern genomics technologies, a variety of molecular biomarkers have been discovered that show potential for specific correlation with prostate cancer. Much of this discovery has been retrospective, using microdissected tissue from prostatectomy. The goal of current research is to apply genomic assays to noninvasive specimens such as blood and urine. Progress in this area is the subject of this review

    Yes-associated protein (YAP) is a founding member of the WW domain family: sequence, expression and chromosomal localization of the human YAP gene

    No full text
    We report cDNA cloning and characterization of the human and mouse orthologs of the chicken YAP (Yes-associated protein) gene which encodes a novel protein that binds to the SH3 (Src homology 3) domain of the Yes proto-oncogene product. Sequence comparison between mouse, human, and chicken YAP proteins showed an inserted sequence in the mouse YAP that represented an imperfect repeat of an upstream sequence. Further analysis of this sequence revealed a putative protein module that is found in various structural, regulatory, and signaling molecules in yeast, nematode, and mammals including human dystrophin. Because one of the prominent features of this sequence motif is two tryptophans (W), we named it the WW domain (Bork, P., and Sudol, M. (1994) Trends Biochem. Sci. 19, 531-533). Since its delineation, more proteins have been shown to contain this domain, and we report here on the widespread distribution of the WW module and present a discussion of its possible function. We have also shown that the human YAP gene is well conserved among higher eukaryotes, but it may not be conserved in yeast. Its expression at the RNA level in adult human tissues is nearly ubiquitous, being relatively high in placenta, prostate, ovary, and testis, but is not detectable in peripheral blood leukocytes. Using fluorescence in situ hybridization on human metaphase chromosomes and by analyzing rodent-human hybrids by Southern blot hybridization and polymerase chain reaction amplification, we mapped the human YAP gene to chromosome band 11q13, a region to which the multiple endocrine neoplasia type 1 gene has been mapped

    Gene structure, promoter activity, and chromosomal location of the DR-nm23 gene, a related member of the nm23 gene family.

    No full text
    DR-nm23 cDNA was cloned recently by differential screening of a cDNA library derived from chronic myelogenous leukemia-blast crisis primary cells. It is highly homologous to the putative metastasis suppressor nm23-H1 gene and the closely related nm23-H2 gene. When overexpressed in the myeloid precursor 32Dcl3 cell line, it inhibited granulocyte colony-stimulating factor-stimulated granulocytic differentiation and induced apoptosis. We have now found that the expression of DR-nm23 is not restricted to hematopoietic cells but is also detected in an array of solid tumor cell lines, including carcinoma of the breast, colon, and prostate, as well as the glioblastoma cell line T98G. We have also isolated both the gene and its 5'-flanking region and found that DR-nm23 localizes on chromosome 16q13. The gene consists of six exons and five introns. When fused in-frame to the nucleotide sequence for the green fluorescent protein and transfected in SAOS-2 cells, it generates a protein of the predicted size that localizes to the cytoplasm. The 5'-flanking region of DR-nm23 does not contain a canonical TATA box or a CAAT box, but it is G+C rich and contains two binding sites for the developmentally regulated transcription factor activator protein 2 (AP-2). Transient expression assays of DR-nm23 promoter-chloramphenicol acetyltransferase constructs demonstrated that the segment from nucleotides -1028 to +123 has the highest activity in hematopoietic K562 cells and in TK-ts13 hamster fibroblasts. Moreover, AP-2 induced a 3-fold transactivation of the DR-nm23 5'-flanking segment from nucleotides -1676 to +123 and interacted specifically with oligomers containing putative AP-2 binding sites (-936 to -909, and -548 to -519) as indicated by electrophoretic mobility shift assay. Furthermore, nuclear run-on assays from high and low DR-nm23-expressing cells (K562 and CCRF-CEM, respectively) revealed similar transcription rates. Therefore, the regulation of the DR-nm23 gene expression might involve other mechanisms occurring at posttranscriptional and/or translational level

    The human homologue of the retroviral oncogene qin maps to chromosome 14q13.

    No full text
    corecore