305 research outputs found

    Suppression of intrinsic neutron background in the Multi-Grid detector

    Full text link
    One of the key requirements for neutron scattering instruments is the Signal-to-Background ratio (SBR). This is as well a design driving requirement for many instruments at the European Spallation Source (ESS), which aspires to be the brightest neutron source of the world. The SBR can be effectively improved with background reduction. The Multi-Grid, a large-area thermal neutron detector with a solid boron carbide converter, is a novel solution for chopper spectrometers. This detector will be installed for the three prospective chopper spectrometers at the ESS. As the Multi-Grid detector is a large area detector with a complex structure, its intrinsic background and its suppression via advanced shielding design should be investigated in its complexity, as it cannot be naively calculated. The intrinsic scattered neutron background and its effect on the SBR is determined via a detailed Monte Carlo simulation for the Multi-Grid detector module, designed for the CSPEC instrument at the ESS. The impact of the detector vessel and the neutron entrance window on scattering is determined, revealing the importance of an optimised internal detector shielding. The background-reducing capacity of common shielding geometries, like side-shielding and end-shielding is determined by using perfect absorber as shielding material, and common shielding materials, like B4_{4}C and Cd are also tested. On the basis of the comparison of the effectiveness of the different shielding topologies and materials, recommendations are given for a combined shielding of the Multi-Grid detector module, optimised for increased SBR.Comment: 26 pages, 18 figures, revise

    A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    Get PDF
    A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4^{4}He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4^{4}He gas volume, the 4^{4}He-based detector registered a maximum scintillation-light yield of 750~keVee_{ee} to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750~keVee_{ee} was excellent in the case of the 4^{4}He-based detector. Above 750~keVee_{ee} its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.Comment: 23 pages, 7 figures, Nuclear Instruments and Methods in Physics Research Section A review addresse

    A simulational study of the indirect geometry neutron spectrometer, BIFROST at the European Spallation Source, from neutron source position to detector position

    Full text link
    The European Spallation Source (ESS) is intended to become the most powerful spallation neutron source in the world and the flagship of neutron science in the upcoming decades. The exceptionally high neutron flux will provide unique opportunities for scientific experiments, but also set high requirements for the detectors. One of the most challenging aspects is the rate capability and in particular the peak instantaneous rate capability, i.e. the number of neutrons hitting the detector per channel or cm2^2 at the peak of the neutron pulse. The primary purpose of this paper is to estimate the incident rates that are anticipated for the BIFROST instrument planned for ESS, and also to demonstrate the use of powerful simulation tools for the correct interpretation of neutron transport in crystalline materials. A full simulation model of the instrument from source to detector position, implemented with the use of multiple simulation software packages is presented. For a single detector tube instantaneous incident rates with a maximum of 1.7 GHz for a Bragg peak from a single crystal, and 0.3 MHz for a vanadium sample are found. This paper also includes the first application of a new pyrolytic graphite model, and a comparison of different simulation tools to highlight their strengths and weaknesses.Comment: 45 pages, 20 figure

    Evaluation of a method for time-of-flight, wavelength and distance calibration for neutron scattering instruments by means of a mini-chopper and standard neutron monitors

    Full text link
    Accurate conversion of neutron time-of-flight (TOF) to wavelength, and its uncertainty, is of fundamental importance to neutron scattering measurements. Especially in cases where instruments are highly configurable, the determination of the absolute wavelength after any change must always be performed. Inspired by the manner with which neutron spectrometers determine the absolute wavelength, we evaluate for the first time, in the author's knowledge, a commonly used method for converting TOF to neutron wavelength, the distance of a monitor from the source of neutrons and we analytically calculate the uncertainty contributions that limit the precision of the conversion. The method was evaluated at the V20 test beamline at the Helmholtz Zentrum Berlin (HZB), emulating the ESS source with a pulse of 2.86 ms length and 14 Hz repetition rate, by using a mini-chopper operated at 140 Hz, beam monitors (BMs) and data acquisition infrastructure. The mini-chopper created well-defined neutron pulses and the BM was placed at two positions, enabling the average wavelength of each of the pulses created to be determined. The used experimental setup resulted in absolute wavelength determination at the monitor positions with a δλmean/λmean\delta \lambda_{mean} / \lambda_{mean} of ∼\sim1.8% for λ>4\lambda >4 \r{A}. With a modest increase of the distance between the reference monitor positions a δλmean/λmean\delta \lambda_{mean} / \lambda_{mean} of below 0.5% can be achieved. Further improvements are possible by using a thinner monitor, smaller chopper disc openings and a higher rotational speed chopper. The method requires only two neutron measurements and doesn't necessitate the use of crystals or complex fitting, and could constitute a suitable addition to imaging, diffraction, reflectometers and small angle neutron scattering instruments, at spallation sources, that do not normally utilise fast choppers

    Tagging fast neutrons from an 241Am/9Be source

    Get PDF
    We report on an investigation of the fast-neutron spectrum emitted by 241Am/9Be. Well-understood shielding, coincidence, and time-of-flight measurement techniques are employed to produce a continuous, polychromatic, energy-tagged neutron beam.Comment: 17 pages, 7 figures, submitted to Journal of Applied Radiation and Isotope

    Color-flow decomposition of QCD amplitudes

    Full text link
    We introduce a new color decomposition for multi-parton amplitudes in QCD, free of fundamental-representation matrices and structure constants. This decomposition has a physical interpretation in terms of the flow of color, which makes it ideal for merging with shower Monte-Carlo programs. The color-flow decomposition allows for very efficient evaluation of amplitudes with many quarks and gluons, many times faster than the standard color decomposition based on fundamental-representation matrices. This will increase the speed of event generators for multi-jet processes, which are the principal backgrounds to signals of new physics at colliders.Comment: 23 pages, 11 figures, version to appear on Phys. Rev.

    The HADES Tracking System

    Full text link
    The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in total about 30 square meter of active area. Low multiple scattering in the in total four planes of drift chambers before and after the magnetic field is ensured by using helium-based gas mixtures and aluminum cathode and field wires. First in-beam performance results are contrasted with expectations from simulations. Emphasis is placed on the energy loss information, exploring its relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on Instrumentation, Vienna, February 2004, to be published in NIM A (special issue

    Vanadium based neutron beam monitor

    Get PDF
    A prototype quasiparasitic thermal neutron beam monitor based on isotropic neutron scattering from a thin natural vanadium foil and standard 3He proportional counters is conceptualized, designed, simulated, calibrated, and commissioned. The European Spallation Source designed to deliver the highest integrated neutron flux originating from a pulsed source is currently under construction in Lund, Sweden. The effort to investigate a vanadium based neutron beam monitor was triggered by a list of requirements for beam monitors permanently placed in the ESS neutron beams in order to provide reliable monitoring at complex beamlines low attenuation, linear response over a wide range of neutron fluxes, near to constant efficiency for neutron wavelengths in a range of 0.6 10 , calibration stability and the possibility to place the system in vacuum are all desirable characteristics. The scattering based prototype, employing a natural vanadium foil andstandard 3He proportional counters, was investigated at the V17 and V20 neutron beamlines of the Helmholtz Zentrum in Berlin, Germany, in several different geometrical configurations of the 3He proportional counters around the foil. Response linearity is successfully demonstrated for foil thicknesses ranging from 0.04 mm to 3.15 mm. Attenuation lower than 1 for thermal neutrons is demonstrated for the 0.04 mm and 0.125 mm foils. The geometries used for the experiment were simulated allowing for absolute flux calibration and establishing the possible range of efficiencies for various designs of the prototype. The operational flux limits for the beam monitor prototype were established as a dependency of the background radiation and prototype geometry. The herein demonstrated prototype monitors can be employed for neutron intensities ranging from 103 1010 n s

    Super AutoDipole

    Full text link
    The publicly available package for an automated dipole subtraction, AutoDipole, is extended to include the SUSY dipoles in the MSSM. All fields in the SM and the MSSM are available. The code is checked against the analytical expressions for a simple process. The extended package makes it possible to compute the QCD NLO corrections to SUSY multi-parton processes like the stop pair production plus jets at the LHC.Comment: 16 pages, 1 figure, v2: a few typos to match the published version in Eur. Phys. J.
    • …
    corecore