223 research outputs found

    Comparison of PET/CT-based eligibility according to VISION and TheraP trial criteria in end-stage prostate cancer patients undergoing radioligand therapy

    Get PDF
    Background Two randomized clinical trials demonstrated the efficacy of prostate-specific membrane antigen (PSMA) radioligand therapy (PSMA RLT) in metastatic castration-resistant prostate cancer (mCRPC). While the VISION trial used criteria within PSMA PET/CT for inclusion, the TheraP trial used dual tracer imaging including FDG PET/CT. Therefore, we investigated whether the application of the VISION criteria leads to a benefit in overall survival (OS) or progression-free survival (PFS) for men with mCRPC after PSMA RLT. Methods Thirty-five men with mCRPC who had received PSMA RLT as a last-line option and who had undergone pretherapeutic imaging with FDG and [68Ga]Ga-PSMA I&T or [18F]PSMA-1007 were studied. Therapeutic eligibility was retrospectively evaluated using the VISION and TheraP study criteria. Results 26 of 35 (74%) treated patients fulfilled the VISION criteria (= VISION+) and only 17 of 35 (49%) fulfilled the TheraP criteria (= TheraP+). Significantly reduced OS and PFS after PSMA RLT was observed in patients rated VISION− compared to VISION+ (OS: VISION−: 3 vs. VISION+: 12 months, hazard ratio (HR) 3.1, 95% confidence interval (CI) 1.0–9.1, p < 0.01; PFS: VISION−: 1 vs. VISION+: 5 months, HR 2.7, 95% CI 1.0–7.8, p < 0.01). For patients rated TheraP−, no significant difference in OS but in PFS was observed compared to TheraP+ patients (OS: TheraP−: 5.5 vs. TheraP+: 11 months, HR 1.6, 95% CI 0.8–3.3, p = 0.2; PFS: TheraP−: 1 vs. TheraP+: 6 months, HR 2.2, 95% CI 1.0–4.5, p < 0.01). Conclusion Retrospective application of the inclusion criteria of the VISION study leads to a benefit in OS and PFS after PSMA RL, whereas TheraP criteria appear to be too strict in patients with end-stage prostate cancer. Thus, performing PSMA PET/CT including a contrast-enhanced CT as proposed in the VISION trial might be sufficient for treatment eligibility of end-stage prostate cancer patients

    Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography

    Get PDF
    Several radiolabeled fibroblast activation protein targeted inhibitors (FAPI) have been developed for molecular imaging and therapy. A potential correlation of radiotracer uptake in normal organs and extent of tumor burden may have consequences for a theranostic approach using ligands structurally associated with [68Ga]Ga-FAPI, as one may anticipate decreased doses to normal organs in patients with extensive tumor load. In the present proof-of-concept study investigating patients with solid tumors, we aimed to quantitatively determine the normal organ biodistribution of [68Ga]Ga-FAPI-04, depending on the extent of tumor. Except for a trend towards significance in the myocardium, we did not observe any relevant associations between PET-based tumor burden and normal organs. Those preliminary findings may trigger future studies to determine possible implications for theranostic approaches and FAP-directed drugs, as one may expect an unchanged dose for normal organs even in patients with higher tumor load. Abstract (1) Background: We aimed to quantitatively investigate [68Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [68Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUVmean) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUVmax), tumor volume (TV), and fractional tumor activity (FTA = TV × SUVmean). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman’s rank correlation coefficient. (3) Results: Median SUVmean values were 2.15 in the pancreas (range, 1.05–9.91), 1.42 in the right (range, 0.57–3.06) and 1.41 in the left kidney (range, 0.73–2.97), 1.2 in the heart (range, 0.46–2.59), 0.86 in the spleen (range, 0.55–1.58), 0.65 in the liver (range, 0.31–2.11), and 0.57 in the bone marrow (range, 0.26–0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUVmax (ρ = 0.29, p = 0.07) and TV (ρ = −0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUVmax (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUVmax (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [68Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs

    Chemokine receptor–targeted PET/CT provides superior diagnostic performance in newly diagnosed marginal zone lymphoma patients: a head-to-head comparison with [18F]FDG

    Get PDF
    Background In patients with marginal zone lymphoma (MZL), [18F]FDG PET/CT provided inconsistent diagnostic accuracy. C-X-C motif chemokine receptor 4 (CXCR4) is overexpressed in MZL and thus, may emerge as novel theranostic target. We aimed to evaluate the diagnostic performance of CXCR4-targeting [68Ga]Ga-PentixaFor when compared to [18F]FDG PET/CT in MZL. Methods Thirty-two untreated MZL patients (nodal, n = 17; extranodal, n = 13; splenic, n = 2) received [68Ga]Ga-PentixaFor and [18F]FDG PET/CT within median 2 days. We performed a visual and quantitative analysis of the total lymphoma volume by measuring maximum/peak standardized uptake values (SUVmax/peak), and calculating target-to-background ratios (TBR, defined as lesion-based SUVpeak divided by SUVmean from blood pool). Visual comparisons for both radiotracers were carried out for all target lesions (TL), and quantitative analysis of concordant TL evident on both scans. Last, MZL subtype analyses were also conducted. Results On a patient-based level, [68Ga]Ga-PentixaFor identified MZL manifestations in 32 (100%) subjects (vs. [18F]FDG, 25/32 [78.1%]). Of the 256 identified TL, 127/256 (49.6%) manifestations were evident only on CXCR4-directed imaging, while only 7/256 (2.7%) were identified on [18F]FDG but missed by [68Ga]Ga-PentixaFor. In the remaining 122/256 (47.7%) concordant TL, [68Ga]Ga-PentixaFor consistently provided increased metrics when compared to [18F]FDG: SUVmax, 10.3 (range, 2.53–37.2) vs. 5.72 (2.32–37.0); SUVpeak, 6.23 (1.58–25.7) vs. 3.87 (1.54–27.7); P < 0.01, respectively. Concordant TL TBR on [68Ga]Ga-PentixaFor (median, 3.85; range, 1.05–16.0) was also approximately 1.8-fold higher relative to [18F]FDG (median, 2.08; range, 0.81–28.8; P < 0.01). Those findings on image contrast, however, were driven by nodal MZL (P < 0.01), and just missed significance for extranodal MZL (P = 0.06). Conclusions In newly diagnosed MZL patients, [68Ga]Ga-PentixaFor identified more sites of disease when compared to [18F]FDG, irrespective of MZL subtype. Quantitative PET parameters including TBR were also higher on [68Ga]Ga-PentixaFor PET/CT, suggesting improved diagnostic read-out using chemokine receptor-targeted imaging

    Test-retest repeatability of organ uptake on PSMA‐targeted 18F‐DCFPyL PET/CT in patients with prostate cancer

    Get PDF
    Objectives We evaluated 18F-DCFPyL test–retest repeatability of uptake in normal organs. Methods Twenty-two prostate cancer (PC) patients underwent two 18F-DCFPyL PET scans within 7 days within a prospective clinical trial (NCT03793543). In both PET scans, uptake in normal organs (kidneys, spleen, liver, and salivary and lacrimal glands) was quantified. Repeatability was determined by using within-subject coefficient of variation (wCOV), with lower values indicating improved repeatability. Results For SUVmean, repeatability was high for kidneys, spleen, liver, and parotid glands (wCOV, range: 9.0%–14.3%) and lower for lacrimal (23.9%) and submandibular glands (12.4%). For SUVmax, however, the lacrimal (14.4%) and submandibular glands (6.9%) achieved higher repeatability, while for large organs (kidneys, liver, spleen, and parotid glands), repeatability was low (range: 14.1%–45.2%). Conclusion We found acceptable repeatability of uptake on 18F-DCFPyL PET for normal organs, in particular for SUVmean in the liver or parotid glands. This may have implications for both PSMA-targeted imaging and treatment, as patient selection for radioligand therapy and standardized frameworks for scan interpretation (PROMISE, E-PSMA) rely on uptake in those reference organs

    Comprehensive Echocardiographic and Cardiovascular Magnetic Resonance Evaluation Differentiates Between Patients with Heart Failure with Preserved Ejection Fraction, Hypertensive Patients and Healthy Controls

    Get PDF
    Objectives: The aim of this study was to investigate the utility of a comprehensive imaging protocol including echocardiography and cardiac magnetic resonance in the diagnosis and differentiation of hypertensive heart disease and heart failure with preserved ejection fraction (HFpEF). Background: Hypertension is present in up to 90% of patients with HFpEF and is a major etiological component. Despite current recommendations and diagnostic criteria for HFpEF, no noninvasive imaging technique has as yet shown the ability to identify any structural differences between patients with hypertensive heart disease and HFpEF. Methods: We conducted a prospective cross-sectional study of 112 well-characterized patients (62 with HFpEF, 22 with hypertension, and 28 healthy control subjects). All patients underwent cardiopulmonary exercise and biomarker testing and an imaging protocol including echocardiography with speckle-tracking analysis and cardiac magnetic resonance including T1 mapping pre- and post-contrast. Results: Echocardiographic global longitudinal strain (GLS) and extracellular volume (ECV) measured by cardiac magnetic resonance were the only variables able to independently stratify among the 3 groups of patients. ECV was the best technique for differentiation between hypertensive heart disease and HFpEF (ECV area under the curve: 0.88; GLS area under the curve: 0.78; p &#60; 0.001 for both). Using ECV, an optimal cutoff of 31.2% gave 100% sensitivity and 75% specificity. ECV was significantly higher and GLS was significantly reduced in subjects with reduced exercise capacity (lower peak oxygen consumption and higher minute ventilation–carbon dioxide production) (p &#60; 0.001 for both ECV and GLS). Conclusions: Both GLS and ECV are able to independently discriminate between hypertensive heart disease and HFpEF and identify patients with prognostically significant functional limitation. ECV is the best diagnostic discriminatory marker of HFpEF and could be used as a surrogate endpoint for therapeutic studies

    Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda

    Get PDF
    Many research and monitoring networks in recent decades have provided publicly available data documenting environmental and ecological change, but little is known about the status of efforts to synthesize this information across networks. We convened a working group to assess ongoing and potential cross-network synthesis research and outline opportunities and challenges for the future, focusing on the US-based research network (the US Long-Term Ecological Research network, LTER) and monitoring network (the National Ecological Observatory Network, NEON). LTER-NEON cross-network research synergies arise from the potentials for LTER measurements, experiments, models, and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON measurements to provide standardization and broad scale coverage that complement LTER studies. Initial cross-network syntheses at co-located sites in the LTER and NEON networks are addressing six broad topics: how long-term vegetation change influences C fluxes; how detailed remotely sensed data reveal vegetation structure and function; aquatic-terrestrial connections of nutrient cycling; ecosystem response to soil biogeochemistry and microbial processes; population and species responses to environmental change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded cross-network syntheses involving multiple long-term ecosystem processes at regional or continental scales. These potential syntheses could provide a pathway for the broader scientific community, beyond LTER and NEON, to engage in cross-network science. These examples also apply to many other research and monitoring networks in the US and globally, and can guide scientists and research administrators in promoting broad-scale research that supports resource management and environmental policy

    Lack of repeatability of radiomic features derived from PET scans: results from a 18F‐DCFPyL test–retest cohort

    Get PDF
    Objectives PET-based radiomic metrics are increasingly utilized as predictive image biomarkers. However, the repeatability of radiomic features on PET has not been assessed in a test–retest setting. The prostate-specific membrane antigen-targeted compound 18F-DCFPyL is a high-affinity, high-contrast PET agent that we utilized in a test-retest cohort of men with metastatic prostate cancer (PC). Methods Data of 21 patients enrolled in a prospective clinical trial with histologically proven PC underwent two 18F-DCFPyL PET scans within 7 days, using identical acquisition and reconstruction parameters. Sites of disease were segmented and a set of 29 different radiomic parameters were assessed on both scans. We determined repeatability of quantification by using Pearson's correlations, within-subject coefficient of variation (wCOV), and Bland–Altman analysis. Results In total, 230 lesions (177 bone, 38 lymph nodes, 15 others) were assessed on both scans. For all investigated radiomic features, a broad range of inter-scan correlation was found (r, 0.07–0.95), with acceptable reproducibility for entropy and homogeneity (wCOV, 16.0% and 12.7%, respectively). On Bland–Altman analysis, no systematic increase or decrease between the scans was observed for either parameter (±1.96 SD: 1.07/−1.30, 0.23/−0.18, respectively). The remaining 27 tested radiomic metrics, however, achieved unacceptable high wCOV (≥21.7%). Conclusion Many common radiomic features derived from a test–retest PET study had poor repeatability. Only Entropy and homogeneity achieved good repeatability, supporting the notion that those image biomarkers may be incorporated in future clinical trials. Those radiomic features based on high frequency aspects of images appear to lack the repeatability on PET to justify further study
    corecore