30 research outputs found

    Theileria equi isolates vary in susceptibility to imidocarb dipropionate but demonstrate uniform in vitro susceptibility to a bumped kinase inhibitor

    Get PDF
    Abstract Background The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variation in clinical response to therapy has been observed. Methods We quantified the in vitro susceptibility of two T. equi isolates and a lab generated variant to both imidocarb dipropionate and a bumped kinase inhibitor compound 1294. We also evaluated the capacity of in vitro imidocarb dipropionate exposure to decrease susceptibility to that drug. The efficacy of imidocarb dipropionate for clearing infection in four T. equi infected ponies was also assessed. Results We observed an almost four-fold difference in imidocarb dipropionate susceptibility between two distinct isolates of T. equi. Four ponies infected with the less susceptible USDA Florida strain failed to clear the parasite despite two rounds of treatment. Importantly, a further 15-fold decrease in susceptibility was produced in this strain by continuous in vitro imidocarb dipropionate exposure. Despite a demonstrated difference in imidocarb dipropionate susceptibility, there was no difference in the susceptibility of two T. equi isolates to bumped kinase inhibitor 1294. Conclusions The observed variation in imidocarb dipropionate susceptibility, further reduction in susceptibility caused by drug exposure in vitro, and failure to clear T. equi infection in vivo, raises concern for the emergence of drug resistance in clinical cases undergoing treatment. Bumped kinase inhibitors may be effective as alternative drugs for the treatment of resistant T. equi parasites

    Expression of Babesia equi Merozoite Antigen 1 in Insect Cells by Recombinant Baculovirus and Evaluation of Its Diagnostic Potential in an Enzyme-Linked Immunosorbent Assay

    No full text
    The gene encoding the entire Babesia equi merozoite antigen 1 (EMA-1) was inserted into a baculovirus transfer vector, and a recombinant virus expressing EMA-1 was isolated. The expressed EMA-1 was transported to the surface of infected insect cells, as judged by an indirect fluorescent-antibody test (IFAT). The expressed EMA-1 was also secreted into the supernatant of a cell culture infected with recombinant baculovirus. Both intracellular and extracellular EMA-1 reacted with a specific antibody in Western blots. The expressed EMA-1 had an apparent molecular mass of 34 kDa that was identical to that of native EMA-1. The secreted EMA-1 was used as an antigen in an enzyme-linked immunosorbent assay (ELISA). The ELISA differentiated B. equi-infected horse sera from Babesia caballi-infected horse sera or normal horse sera. The ELISA was more sensitive than the complement fixation test and IFAT. These results demonstrated that the recombinant EMA-1 expressed in insect cells might be a useful diagnostic reagent for detection of antibodies to B. equi
    corecore