1,327 research outputs found

    Evolution equations for slowly rotating stars

    Full text link
    We present a hyperbolic formulation of the evolution equations describing non-radial perturbations of slowly rotating relativistic stars in the Regge--Wheeler gauge. We demonstrate the stability preperties of the new evolution set of equations and compute the polar w-modes for slowly rotating stars.Comment: 27 pages, 2 figure

    Modelling and performance of Nb SIS mixers in the 1.3 mm and 0.8 mm bands

    Get PDF
    We describe the modeling and subsequent improvements of SIS waveguide mixers for the 200-270 and 330-370 GHz bands (Blundell, Carter, and Gundlach 1988, Carter et al 1991). These mixers are constructed for use in receivers on IRAM radiotelescopes on Pico Veleta (Spain, Sierra Nevada) and Plateau de Bure (French Alps), and must meet specific requirements. The standard reduced height waveguide structure with suspended stripline is first analyzed and a model is validated through comparison with scale model and working scale measurements. In the first step, the intrinsic limitations of the standard mixer structure are identified, and the parameters are optimized bearing in mind the radioastronomical applications. In the second step, inductive tuning of the junctions is introduced and optimized for minimum noise and maximum bandwidth. In the 1.3 mm band, a DSB receiver temperature of less than 110 K (minimum 80 K) is measured from 180 through 260 GHz. In the 0.8 mm band, a DSB receiver temperature of less than 250 K (minimum 175 K) is obtained between 325 and 355 GHz. All these results are obtained with room-temperature optics and a 4 GHz IF chain having a 500 MHz bandwidth and a noise temperature of 14 K

    Model projects as tools for cooperative urban development: The case of Haus der Statistik in Berlin

    Get PDF
    According to the New Leipzig Charter, urban development processes should be ‘a matter of all’ – the common good, climate protection and environmental justice, to name but a few aspects. Currently, new forms of innovation seeking models emerge within this context of sustainable urban planning practice - for example, real-world field laboratories and model projects. Haus der Statistik in Berlin is one such ‘model project for cooperative and common-good-oriented urban development’. It is widely recognized for its demand- and process-driven approach, as well as its project development being based on public-civic partnership. As anthropological and urbanist researchers and practitioners involved in the project, we give a situated account on the socio-political elements of the Haus der Statistik’s public-civic partnership and investigate the potentials of this model for a more sustainable urban development. The structure of the paper is threefold: Firstly, we introduce the so-called model project Haus der Statistik and its common-good orientated agenda and relate it to sustainability goals of the New Leipzig Charter. Secondly, we introduce the specific public-civic-framework in regard to its methodological framing within the context of model projects and comparable approaches that focus on collaborative, transdisciplinary and innovative methods, such as real-world field laboratories. Thirdly, we reflect on the elements of the public-civic-partnership framework that have been explored and developed at the ‘model project’ Haus der Statistik since 2015 and its implications for a more sustainable urban development.Peer Reviewe

    Critical Collapse of the Massless Scalar Field in Axisymmetry

    Get PDF
    We present results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, non-spherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a non-spherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure

    Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene

    Full text link
    The density of trap states in the bandgap of semiconducting organic single crystals has been measured quantitatively and with high energy resolution by means of the experimental method of temperature-dependent space-charge-limited-current spectroscopy (TD-SCLC). This spectroscopy has been applied to study bulk rubrene single crystals, which are shown by this technique to be of high chemical and structural quality. A density of deep trap states as low as ~ 10^{15} cm^{-3} is measured in the purest crystals, and the exponentially varying shallow trap density near the band edge could be identified (1 decade in the density of states per ~25 meV). Furthermore, we have induced and spectroscopically identified an oxygen related sharp hole bulk trap state at 0.27 eV above the valence band.Comment: published in Phys. Rev. B, high quality figures: http://www.cpfs.mpg.de/~krellner

    Hole mobility in organic single crystals measured by a "flip-crystal" field-effect technique

    Full text link
    We report on single crystal high mobility organic field-effect transistors (OFETs) prepared on prefabricated substrates using a "flip-crystal" approach. This method minimizes crystal handling and avoids direct processing of the crystal that may degrade the FET electrical characteristics. A chemical treatment process for the substrate ensures a reproducible device quality. With limited purification of the starting materials, hole mobilities of 10.7, 1.3, and 1.4 cm^2/Vs have been measured on rubrene, tetracene, and pentacene single crystals, respectively. Four-terminal measurements allow for the extraction of the "intrinsic" transistor channel resistance and the parasitic series contact resistances. The technique employed in this study shows potential as a general method for studying charge transport in field-accumulated carrier channels near the surface of organic single crystals.Comment: 26 pages, 7 figure

    Test of the Equivalence Principle Using a Rotating Torsion Balance

    Full text link
    We used a continuously rotating torsion balance instrument to measure the acceleration difference of beryllium and titanium test bodies towards sources at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves limits on equivalence-principle violations with ranges from 1 m to infinity by an order of magnitude. The Eoetvoes parameter is eta=(0.3+/-1.8)x10^-13. By analyzing our data for accelerations towards the center of the Milky Way we find equal attractions of Be and Ti towards galactic dark matter, yielding eta=(-4 +/- 7)x10^-5. Space-fixed differential accelerations in any direction are limited to less than 8.8x10^-15 m/s^2 with 95% confidence.Comment: 4 pages, 4 figures; accepted for publication in PR

    Binary Black Hole Mergers in 3d Numerical Relativity

    Get PDF
    The standard approach to the numerical evolution of black hole data using the ADM formulation with maximal slicing and vanishing shift is extended to non-symmetric black hole data containing black holes with linear momentum and spin by using a time-independent conformal rescaling based on the puncture representation of the black holes. We give an example for a concrete three dimensional numerical implementation. The main result of the simulations is that this approach allows for the first time to evolve through a brief period of the merger phase of the black hole inspiral.Comment: 8 pages, 9 figures, REVTeX; expanded discussion, results unchange

    Late Time Tail of Wave Propagation on Curved Spacetime

    Get PDF
    The late time behavior of waves propagating on a general curved spacetime is studied. The late time tail is not necessarily an inverse power of time. Our work extends, places in context, and provides understanding for the known results for the Schwarzschild spacetime. Analytic and numerical results are in excellent agreement.Comment: 11 pages, WUGRAV-94-1
    • …
    corecore