138 research outputs found

    Therapeutic Efficacy of Saline and Glucose Saline against Dermally applied Sulphur Mustard Intoxication in Mice

    Get PDF
    A single dose of saline or glucose-saline (5 mg glucose/kg) offered similar protection to mice against sulphur mustard intoxication, the extent of survival being 83 per cent as against 33 per cent without treatment. All the animals were protected when the treatment was extended by another two consecutive days in the glucose-saline treated group. Both saline and glucose-saline treatments could ameliorate the haemoconcentration as well as normalise pO/sub 2/ and % oxygen saturation. The protection conferred is attributed to the probable replenishment of fluid loss

    Adaptations of the antioxidant system in erythrocytes of trained adult rats: Impact of intermittent hypobaric-hypoxia at two altitudes

    Get PDF
    We have investigated the effects of daily exposure to intermittent hypobaric-hypoxia to two simulated altitudes (5700 m and 6300 m) in adult male rats that had been regularly swim trained in normoxia at sea level prior to exposures. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) along with the oxidative stress (OS) indices, malondialdehyde (MDA) and protein carbonyl content were measured in erythrocytes and their membranes. Hemoglobin increased in the trained animals exposed to 5700 m and in untrained rats exposed to 6300 m. Osmotic fragility in terms of hemolysis increased in altitude exposed animals. SOD increased in those exposed to 6300 m, while CAT increased in trained rats exposed to 5700 m and to 6300 m unlike in untrained rats where CAT increased only at 6300 m. GSH-Px showed varying degrees of elevation in all animals exposed to both altitudes. Erythrocyte membranes showed significant elevations in malondialdehyde (MDA) at 6300 m, while elevated protein carbonyls were noticeable at both altitudes in whole cells and membranes. These results suggest a positively associated elevation in protein oxidation with altitude in trained rats. At 5700 m, animals were less stressed, unlike at 6300 m, as seen from the magnitude of elevations in the OS indices and from the responses of the antioxidant enzymes. © 2005 Elsevier Inc. All rights reserved

    Is the sigma-1 receptor a potential pharmacological target for cardiac pathologies? A systematic review.

    Get PDF
    Sigma-1 receptors are ligand-regulated chaperone proteins, involved in several cellular mechanisms. The aim of this systematic review was to examine the effects that the sigma-1 receptor has on the cardiovascular system. The interaction targets and proposed mechanisms of action of sigma-1 receptors were explored, with the aim of determining if the sigma-1 receptor is a potential pharmacological target for cardiac pathologies. This systematic review was conducted according to the PRISMA guidelines and these were used to critically appraise eligible studies. Pubmed and Scopus were systematically searched for articles investigating sigma-1 receptors in the cardiovascular system. Papers identified by the search terms were then subject to analysis against pre-determined inclusion criteria. 23 manuscripts met the inclusion criteria and were included in this review. The experimental platforms, experimental techniques utilised and the results of the studies were summarised. The sigma-1 receptor is found to be implicated in cardioprotection, via various mechanisms including stimulating the Akt-eNOS pathway, and reduction of Ca2 + leakage into the cytosol via modulating certain calcium channels. Sigma-1 receptors are also found to modulate other cardiac ion channels including different subtypes of potassium and sodium channels and have been shown to modulate intracardiac neuron excitability. The sigma-1 receptor is a potential therapeutic target for treatment of cardiac pathologies, particularly cardiac hypertrophy. We therefore suggest investigating the cardioprotective mechanisms of sigma-1 receptor function, alongside proposed potential ligands that can stimulate these functions

    Effects of ageing on pro-arrhythmic ventricular phenotypes in incrementally paced murine Pgc1β-/- hearts

    Get PDF
    A range of chronic clinical conditions accompany cardiomyocyte energetic dysfunction and constitute independent risk factors for cardiac arrhythmia. We investigated pro-arrhythmic and arrhythmic phenotypes in energetically deficient C57BL mice with genetic ablation of the mitochondrial promoter peroxisome proliferator activated receptor-γ coactivator-1β (Pgc-1β), a known model of ventricular arrhythmia. Pro-arrhythmic and cellular action potential (AP) characteristics were compared in intact Langendorff-perfused hearts from young (12-16 week) and aged (>52 week), WT and Pgc-1β-/- mice. Simultaneous electrocardiographic and intracellular microelectrode recordings were made through successive trains of 100 regular stimuli at progressively incremented heart rates. Aged Pgc-1β-/- hearts displayed an increased incidence of arrhythmia compared to other groups. Young and aged Pgc-1β-/- hearts showed higher incidences of alternans in both AP activation (maximum AP upshoot velocity (dV/dt)max and latency), recovery (action potential duration (APD90) and resting membrane potential (RMP)) characteristics compared to WT hearts. This was particularly apparent at lower pacing frequencies. These findings accompanied reduced (dV/dt)max and increased AP latency values in the Pgc-1β-/- hearts. APs observed prior to termination of the protocol showed lower (dV/dt)max and longer AP latencies, but indistinguishable APD90 and RMPs in arrhythmic compared to non-arrhythmic hearts. APD restitution analysis showed that Pgc-1β-/- and WT hearts showed similar limiting gradients. However, Pgc-1β-/- hearts had shortened plateau AP wavelengths, particularly in aged Pgc-1β-/- hearts. Pgc-1β-/- hearts therefore show pro-arrhythmic instabilities attributable to altered AP conduction and activation rather than recovery characteristics.We acknowledge the financial support from the Medical Research Council (MR/M001288/1); the Wellcome Trust (105727/Z/14/Z); the British Heart Foundation (PG/14/79/31102 and PG/15/12/31280), Sudden arrhythmic death syndrome (SADS) UK; The McVeigh Benefaction and by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia

    Ion channels, long QT syndrome and arrhythmogenesis in ageing.

    Get PDF
    Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias particularly after 40 years of age consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing WT murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.KJ is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. KC was funded by the Physiological Society, United Kingdom. HV is funded by the Wellcome Trust Research Training Fellowship (105727/Z/14/Z) and Sudden Arrhythmic Death Syndrome (SADS), UK. SA is funded by a Medical Research Council Research Fellowship (MR/M001288/1). AG is funded by the McVeigh Benefaction and Sudden Arrhythmic Death Syndrome (SADS), UK. CLHH is funded by the Wellcome Trust, Medical Research Council, British Heart Foundation and McVeigh Benefaction

    Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes

    Get PDF
    Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na+^{+} current components play critical parts. Early peak, Na+^{+} currents (INa_{Na}) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na+^{+} currents (INa−L_{Na-L}) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of INa−L_{Na-L} can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na+^{+} conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na+^{+} channel abnormalities increasing INa−L_{Na-L} are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate INa−L_{Na-L}. These include (1) overlaps between steady-state activation and inactivation increasing window current\textit{window current}, (2) kinetic deficiencies in Na+^{+} channel inactivation leading to bursting phenomena\textit{bursting phenomena} associated with repetitive channel openings and (3) non-equilibrium gating\textit{non-equilibrium gating} processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased INa−L_{Na-L}.KC was funded by the Physiological Society, United Kingdom at the University of Surrey. KJ is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia, and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. ML is funded by the British Heart Foundation (PG/14/80/31106, PG/16/67/32340) and Medical Research Council (G10002647). CLHH is funded by the Medical Research Council (MR/M001288/1), Wellcome Trust (105727/Z/14/Z), British Heart Foundation (PG/14/79/31102), the McVeigh Benefaction and SADS UK

    Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/- hearts.

    Get PDF
    AIM: To test a hypothesis attributing arrhythmia in Brugada Syndrome to right ventricular (RV) outflow tract (RVOT) conduction abnormalities arising from Nav 1.5 insufficiency and fibrotic change. METHODS: Arrhythmic properties of Langendorff-perfused Scn5a+/- and wild-type mouse hearts were correlated with ventricular effective refractory periods (VERPs), multi-electrode array (MEA) measurements of action potential (AP) conduction velocities and dispersions in conduction direction (CD), Nav 1.5 expression levels, and fibrotic change, as measured at the RVOT and RV. Two-way anova was used to test for both independent and interacting effects of anatomical region and genotype on these parameters. RESULTS: Scn5a+/- hearts showed greater arrhythmic frequencies during programmed electrical stimulation at the RVOT but not the RV. The Scn5a+/- genotype caused an independent increase of VERP regardless of whether the recording site was the RVOT or RV. Effective AP conduction velocities (CV†s), derived from fitting regression planes to arrays of observed local activation times were reduced in Scn5a+/- hearts and at the RVOT independently. AP conduction velocity magnitudes derived by averaging MEA results from local vector analyses, CV*, were reduced by the Scn5a+/- genotype alone. In contrast, dispersions in conduction direction, were greater in the RVOT than the RV, when the atrioventricular node was used as the pacing site. The observed reductions in Nav 1.5 expression were attributable to Scn5a+/-, whereas increased levels of fibrosis were associated with the RVOT. CONCLUSIONS: The Scn5a+/- RVOT recapitulates clinical findings of increased arrhythmogenicity through reduced CV† reflecting reduced CV* attributable to reduced Nav 1.5 expression and increased CD attributable to fibrosis

    Territory-Wide Chinese Cohort of Long QT Syndrome: Random Survival Forest and Cox Analyses

    Get PDF
    Introduction: Congenital long QT syndrome (LQTS) is a cardiac ion channelopathy that predisposes affected individuals to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD). The main aims of the study were to: (1) provide a description of the local epidemiology of LQTS, (2) identify significant risk factors of ventricular arrhythmias in this cohort, and (3) compare the performance of traditional Cox regression with that of random survival forests. / Methods: This was a territory-wide retrospective cohort study of patients diagnosed with congenital LQTS between 1997 and 2019. The primary outcome was spontaneous VT/VF. / Results: This study included 121 patients [median age of initial presentation: 20 (interquartile range: 8–44) years, 62% female] with a median follow-up of 88 (51–143) months. Genetic analysis identified novel mutations in KCNQ1, KCNH2, SCN5A, ANK2, CACNA1C, CAV3, and AKAP9. During follow-up, 23 patients developed VT/VF. Univariate Cox regression analysis revealed that age [hazard ratio (HR): 1.02 (1.01–1.04), P = 0.007; optimum cut-off: 19 years], presentation with syncope [HR: 3.86 (1.43–10.42), P = 0.008] or VT/VF [HR: 3.68 (1.62–8.37), P = 0.002] and the presence of PVCs [HR: 2.89 (1.22–6.83), P = 0.015] were significant predictors of spontaneous VT/VF. Only initial presentation with syncope remained significant after multivariate adjustment [HR: 3.58 (1.32–9.71), P = 0.011]. Random survival forest (RSF) model provided significant improvement in prediction performance over Cox regression (precision: 0.80 vs. 0.69; recall: 0.79 vs. 0.68; AUC: 0.77 vs. 0.68; c-statistic: 0.79 vs. 0.67). Decision rules were generated by RSF model to predict VT/VF post-diagnosis. / Conclusions: Effective risk stratification in congenital LQTS can be achieved by clinical history, electrocardiographic indices, and different investigation results, irrespective of underlying genetic defects. A machine learning approach using RSF can improve risk prediction over traditional Cox regression models

    Derivation of an electronic frailty index for predicting short-term mortality in heart failure: a machine learning approach

    Get PDF
    Aims Frailty may be found in heart failure patients especially in the elderly and is associated with a poor prognosis. However, assessment of frailty status is time-consuming, and the electronic frailty indices developed using health records have served as useful surrogates. We hypothesized that an electronic frailty index developed using machine learning can improve short-term mortality prediction in patients with heart failure. Methods and results This was a retrospective observational study that included patients admitted to nine public hospitals for heart failure from Hong Kong between 2013 and 2017. Age, sex, variables in the modified frailty index, Deyo's Charlson co-morbidity index (≥2), neutrophil-to-lymphocyte ratio (NLR), and prognostic nutritional index at baseline were analysed. Gradient boosting, which is a supervised sequential ensemble learning algorithm with weak prediction submodels (typically decision trees), was applied to predict mortality. Variables were ranked in the order of importance with a total score of 100 and used to build the frailty models. Comparisons were made with decision tree and multivariable logistic regression. A total of 8893 patients (median: age 81, Q1–Q3: 71–87 years old) were included, in whom 9% had 30 day mortality and 17% had 90 day mortality. Prognostic nutritional index, age, and NLR were the most important variables predicting 30 day mortality (importance score: 37.4, 32.1, and 20.5, respectively) and 90 day mortality (importance score: 35.3, 36.3, and 14.6, respectively). Gradient boosting significantly outperformed decision tree and multivariable logistic regression. The area under the curve from a five-fold cross validation was 0.90 for gradient boosting and 0.87 and 0.86 for decision tree and logistic regression in predicting 30 day mortality. For the prediction of 90 day mortality, the area under the curve was 0.92, 0.89, and 0.86 for gradient boosting, decision tree, and logistic regression, respectively. Conclusions The electronic frailty index based on co-morbidities, inflammation, and nutrition information can readily predict mortality outcomes. Their predictive performances were significantly improved by gradient boosting techniques
    • …
    corecore