
INVITED REVIEW

Sodium channel biophysics, late sodium current and genetic
arrhythmic syndromes

Karan R. Chadda1,2 & Kamalan Jeevaratnam1,3
& Ming Lei4 &

Christopher L.-H. Huang2,5

Received: 21 January 2017 /Accepted: 14 February 2017
# The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Arrhythmias arise from breakdown of orderly ac-
tion potential (AP) activation, propagation and recovery driv-
en by interactive opening and closing of successive voltage-
gated ion channels, in which one or more Na+ current compo-
nents play critical parts. Early peak, Na+ currents (INa)
reflecting channel activation drive the AP upstroke central to
cellular activation and its propagation. Sustained late Na+ cur-
rents (INa-L) include contributions from a component with a
delayed inactivation timecourse influencing AP duration
(APD) and refractoriness, potentially causing pro-arrhythmic
phenotypes. The magnitude of INa-L can be analysed through
overlaps or otherwise in the overall voltage dependences of
the steady-state properties and kinetics of activation and inac-
tivation of the Na+ conductance. This was useful in analysing
repetitive firing associated with paramyotonia congenita in
skeletal muscle. Similarly, genetic cardiac Na+ channel abnor-
malities increasing INa-L are implicated in triggering phenom-
ena of automaticity, early and delayed afterdepolarisations and
arrhythmic substrate. This review illustrates a wide range of
situations that may accentuate INa-L. These include (1)

overlaps between steady-state activation and inactivation in-
creasing window current, (2) kinetic deficiencies in Na+ chan-
nel inactivation leading to bursting phenomena associated
with repetitive channel openings and (3) non-equilibrium
gating processes causing channel re-opening due to more rap-
id recoveries from inactivation. All these biophysical possibil-
ities were identified in a selection of abnormal human SCN5A
genotypes. The latter presented as a broad range of clinical
arrhythmic phenotypes, for which effective therapeutic inter-
vention would require specific identification and targeting of
the diverse electrophysiological abnormalities underlying
their increased INa-L.
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AF Atrial fibrillation
AP Action potential
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ATX-II Anemonia sulcata toxin
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BrS Brugada syndrome
DAD Delayed afterdepolarisation
EAD Early afterdepolarisation
ECG Electrocardiographic
F Faraday’s constant
gNa Sodium conductance
gNa

* Maximum value of sodium conductance
ICa Calcium current
IFM Isoleucine-phenylalanine-methionine
IK1 Inward rectifying K+ current
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IKr Rapid delayed rectifier K+ current
IKs Slowly activating delayed rectifier K+ current
INa Sodium current
INa-L Late sodium current
Ito Transient outward K+ current
k Boltzmann constant
kact Slope factor for activation
kinact Slope factor for inactivation
kmn Voltage-dependent rate constants
LQTS3 Long QT syndrome type 3
MEPPC Multifocal ectopic Purkinje-related premature

contractions
R Gas constant
SAN Sino-atrial node
SCD Sudden cardiac death
SIDS Sudden infant death syndrome
T Temperature
TdP Torsades de pointes
V Membrane potential
Vact Voltage at half-maximum activation
Vinact Voltage at half-maximum inactivation
VT Ventricular tachycardia
z Valency
αh Time constant for transition into inactivation
βh Time constant for recovery from inactivation

Introduction

Arrhythmias follow disruption of the normal interacting suc-
cession of ion channel activation and inactivation that pro-
duces the transmembrane currents underlying the propagated
action potential (AP) [10, 23, 80]. In skeletal muscle, these
manifest as a range of syndromes associated with repetitive
action potential firing associated with a number of ion channel
abnormalities. Where involving the heart, ventricular arrhyth-
mia potentially results in sudden cardiac death (SCD), which
accounts for ∼4 to 5 million deaths per year worldwide [17].
Cardiac ischaemia accounts for most cases of arrhythmia [9],
but ∼10–20% of arrhythmic deaths may result from ion chan-
nelopathy [40]. These could affect ion channels carrying Na+,
INa, and Ca2+ depolarizing currents, ICa, and a number of, Ito,
IKr, IKs and IK1, K

+ channels contributing repolarizing current
[57, 70]. The depolarisation-activated ICa induces Ca

2+ release
from intracellular sarcoplasmic reticular Ca2+ stores which
triggers mechanical activity. The detailed AP timecourse in
different cardiac regions or animal species is determined by
their corresponding patterns of ion channel expression [71].
Once generated, local circuit currents driven by the inward
flux of Na+ propagate APs to hitherto quiescent myocardial
regions through gap junctions between successive cells. The
result is a wave of membrane depolarisation followed by re-
fractoriness [39].

The Na+ channel is central to this excitation process in view
of its strategic role in initiation of the cardiac AP. The Na+

current, INa, may comprise a mixture of currents with different
kinetics. These might arise from modulations in the principal
Nav species or distinct channel subpopulations [67, 68].
Functional alterations in the biophysical properties of the
Na+ channel thus lead to a range of arrhythmic conditions.
An important group of these is the result of sustained inward
Na+ current. The repetitive firing observed in skeletal muscle
fibres in patients with paramyotonia congenita arises from an
incomplete voltage-dependent Na+ channel inactivation thus
leaving some channels in a conductive state [45]. This results
from mutations in the skeletal muscle Nav1.4 channel [22, 44,
69] that produce positive shifts in the half maximal voltage of
its steady-state inactivation function (Vinact). Alternatively,
negative shifts in the voltage dependence of Na+ channel ac-
tivation (Vact) permit channel activation with smaller
depolarisations. Either situation potentially results in sustained
inward current that follows excitation that can cause recurrent
channel re-activation [12, 28, 29].

In cardiac muscle, sustained inward Na+ currents also
known as late Na+ currents (INa-L) occur under physiological
conditions during the cardiac AP. These currents nevertheless
have conductance, mean open time and selectivity properties
identical to the remaining Nav1.5 current [25, 37]. It remains
possible to consider both early Na+ currents and potentially
arrhythmogenic INa-L in terms of the overall activation and
inactivation characteristics that they produce in cardiac
myocytes. A comparison with clinical findings will demon-
strate that cardiac muscle shows a wider range of possible
variations in such characteristics than the straightforward
shifts in steady-state activation and inactivation reported so
far in skeletal muscle. These findings have implications for
therapeutic intervention.

Na+ channel activation and inactivation

The cardiac Na+ channel multi-unit protein comprises princi-
pal Nav1.5, α- and associated auxiliary β-subunits. The α-
subunit consists of four homologous domains (I–IV) each
containing six transmembrane segments (S1–S6) [8], and it
suffices to mediate ion selectivity, and the voltage-gated acti-
vation and inactivation properties of the channel [62]. Voltage-
gated Nav1.5 activation depends on transitions in the S4 seg-
ment whose positively charged amino acids at every third
position likely subserve a voltage-sensing function [13].
Membrane depolarisation moves the S4 segment relative to
other channel segments so that the voltage-sensing domain,
formed by the S1–S4 block, rotates. This permits Na+ influx
through the pore-forming component made up of the S5 and
S6 segments and the re-entrant P loop [21, 50]. This early INa
drives the rapid AP upstroke resulting in further channel acti-
vation. Hodgkin and Huxley (1952) had first described such
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activation in terms of three m particles undergoing a voltage-
dependent, first-order transition from an inactive to active
state, giving channel openings of higher-order kinetics [32].
The maximum attainable Na+ current would depend up-
on the number of available channels, and be compro-
mised in situations of Nav1.5 insufficiency, as in
Brugada syndrome (BrS) [42].

Nav1.5 inactivation terminates the inward INa permitting
membrane repolarisation also driven by other, outward, ionic
currents. Nav1.5 inactivation involves two, fast and slow, ki-
netic components. Fast inactivation occurs within millisec-
onds and results from the cytoplasmic III–IV linker occluding
the pore [38]. This may involve an isoleucine-phenylalanine-
methionine (IFM) motif, which is a hydrophobic triplet in the
III–IV linker that may act as a ‘latch’ keeping the fast inacti-
vation gate shut [38]. Docking sites for this inactivation gate
likely include the S6 segment in domain IV and the S4–5
loops in domains III and IV [8]. Hodgkin and Huxley corre-
spondingly described a parallel first-order, voltage-dependent
h-inactivation process resulting in refractoriness with
prolonged depolarisation and recovery from such refractori-
ness with repolarisation. Slow inactivation, subsequently
reported in NaF-perfused Loligo axons [14, 63], may
include structurally distinct components [83], likely in-
volving conformational changes of the pore component
of the α-subunit [81].

These processes have been organised in a reaction scheme
in which a channel transitions through several closed (C0 to
C3) resting states, then an open (O) state, with voltage-
dependent rate constants kmn intervening between any given
pair of states m and n. The channel then transitions through
inactivated (I1 and I2) states, followed by recovery from inac-
tivation, similarly governed by voltage-dependent rate con-
stants αh and βh (Fig. 1). The latter suggests resting, activated
and inactivated states of the channel in which the channel is
closed during resting and inactivated states, with separate pro-
cesses mediating activation and inactivation. Channel opening
with depolarisation is dependent not only upon the extent of
activation but also upon the extent to which channels have
transitioned into an inactivated state. These openings increase
the membrane Na+ conductance, gNa, in turn permitting a peak

INa or INa-L to take place down its net electrochemical driving
force (V-ENa), contributing to the in vivo waveform of the
cardiac AP (Fig. 2a). An early peak INa related to the activa-
tion process of the channel drives the upstroke of the AP and
rapidly inactivates within a few milliseconds. The Na+ chan-
nel component underlying INa-L shows a diminished or slowed
inactivation and a more negative (20 mV) voltage dependence
in its activation properties than the remaining INa [68]. Early
modelling predicted an INa-L of magnitude ∼1–2% of peak INa
[48, 58]. Increases in INa-L thus influence AP duration and
refractoriness. Currents arising from additional back-
ground IbNa attributed to Na+-K+-ATPase and Na+-Ca2+

exchange-mediated leak currents are distinct from the
voltage-dependent Na+ channel processes analysed here
[7, 15, 31, 58].

Graphical representation of Na+ channel activation
and inactivation

Figure 3 illustrates graphical representations of the conse-
quences of these activation and inactivation processes and
their possible interaction, which predicts the resulting INa.
First, the steady-state activation curve illustrates the potential
increase in Na+ conductance and therefore of INa as a function
of the membrane potential V. Each individual INa component
would reflect a conductance contribution gNa described by a
Boltzmann distribution between two, open and closed, states
whose energies that vary linearly with V. This would predict a
sigmoid relationship between gNa and V. In the equation,

gNa ¼ gNa*
.

1þ exp − V−Vactð Þ
.
kact

h in o
;

term gNa
* is the maximum value of gNa and Vact is the voltage

at its half-maximum value. The term kact is the slope factor for
activation, which characterises the voltage sensitivity of the
component channel in terms of the valency, z, of the charge
transfer involved in its transitions between the open and
closed states, through the equation kact = RT/(zF), where
R = gas constant, T = temperature and F = Faraday’s constant.
Either increasing the value of z or reducing the value of kact
will increase the steepness of the activation-voltage
relationship.

Second, steady-state inactivation curves normalised to the
interval [0,1] give an indication of the fraction of activatable
channels mediating each Na+ conductance component, h, as
limited by the degree of inactivation, each with its own inac-
tivation slope factor kinact,

h ¼ 1
.

1þ exp − V−V inactð Þ
.
k inact

h in o
:

Third, in addition to their steady-state properties, the acti-
vation and inactivation processes show distinct kinetics.
Inactivation kinetics is typically slower than activation
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Fig. 1 Sequence of Na+ channel states. State diagram representing
transitions between closed (C), open (O) and inactivated (I) states of the
Na+ channel incorporating ionic and gating current data, showing the
voltage-dependent rate constants (kmn, αh and βh) which determine the
kinetics of transitions between states [81]
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kinetics and extends over timescales comparable to the recov-
ery phase of the AP. A family of inactivation curves rather than
a single inactivation curve could be used to represent the time
evolution of the inactivation process as might occur following
imposition of a given voltage step. For any given component,
the simplest two-state model might assume activatable and
inactivated states of energies E1(V) and E2(V), respectively,

linearly dependent on the voltage V through a coefficient de-
pendent on their effective position in the membrane field. It
could then incorporate forward, α, and backward, β, rate con-
stants determined by the energy of the barrier E*(V) given by
α(V) = A exp{[E1(V) − E*(V)]/kT} and β(V) = A exp{[E2(V) −
E*(V)]/kT}, where k in this instance represents the Boltzmann
constant and A the Arrhenius constant [1].
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Fig. 3 Curves illustrating the voltage dependence for Na+ channel
activation and inactivation under steady-state and transient conditions. a
Normalised steady-state activation and inactivation curves (after [51]) as
well as a family of transient inactivation curves expected at successively
greater intervals following the onset of a large voltage step (a) from the
resting potential (i). Na+ conductance (gNa) is normalised to peak gNa
obtained in response to a depolarizing voltage step of sufficient
magnitude to elicit maximum peak Na+ conductance. b Superimposed
upon these activation curves is an illustration of the trajectory of Na+

current activation (continuous line, arrowed) from the resting potential (i)
through voltages along the increasing (ii)–(iv) and plateau regions (iv) and
(v) of the activation curve. This is followed by the trajectory of Na+ current
inactivation from the action potential peak (v) through phase 1 rapid
repolarisation ((v)–(vi)), the phase 2 plateau ((vi)–(vii)), phase 3
repolarisation ((vii)–(viii)) and restoration of electrical diastole ((viii)–(ix)),
over which the Na+ channel recovers from refractoriness. The overlap
between the activation and inactivation curves is shaded grey to illustrate
conditions under which a physiological window current would be expected
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Fig. 2 Relationships between peak and late Na+ currents and cardiac
action potential timecourse. Comparisons of situations expected under
conditions of normal (a) and prolonged action potential (AP) recovery
timecourse (b). This illustrates the increase in amplitude and duration of

late Na+ current (INa-L) (top panels) in relationship to the timecourse of
the successive phases (0–4) of the cardiac AP (bottom panels) under
normal (a) and conditions associated with increased INa-L (b). Changes
in INa-L magnitude are not drawn to scale
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The relationship between Na+ channel activation
and inactivation curves and the late Na+ current, INa-L

The relative contributions of activation and inactivation prop-
erties can be assessed from plots of their respective overall
dependencies upon voltage. These are shown in functions
illustrated using established experimental values in Fig. 3a
[51]. An imposed voltage step would produce a rapid activa-
tion of gNa, whose value would fall close to the corresponding
ordinate of the activation curve. Thus, there will initially be
little evidence of the slower inactivation process, but this will
subsequently cause gNa to decline. This time evolution of in-
activation is represented by the successive dotted transient in-
activation curves that progressively approach the steady-state
inactivation curve, which would predict full inactivation at
depolarised voltages. Alternatively, a persistent conductance
would result from an incomplete inactivation either at times
when the relevant decay is incomplete or in the event of an
incomplete steady-state inactivation at the voltage in question.
Thus, the effective gNa at any given time following a particular
voltage step is effectively the ordinate in the activation multi-
plied by corresponding ordinate in the inactivation function.

Figure 3b reconstructs both the gNa activation (full arrows)
and inactivation variables (open arrows) through the
timecourse of the cardiac AP. The charging of an initially
quiescent membrane at the resting potential (i) by local circuit
currents through the passive cable formed by intervening car-
diac myocytes from previously excited membrane regions
produces an activation locus ((i)–(ii)) to the foot of the
activation-voltage relationship. The resulting Na+ channel
opening initiates a regenerative cycle of depolarisation and
further channel opening producing the steep rise of gNa along
the activation curve from ((ii)–(iii)) to maximum channel ac-
tivation along ((iv)–(v)), thereby completing phase 0 of the
cardiac AP. The inactivation locus is then followed through
phase 1 fast early repolarisation ((v)–(vi)), during which there
is a rapid Na+ channel inactivation. This is succeeded by the
phase 2 plateau ((vi)–(vii)), during which an incomplete de-
velopment of inactivation leaves a finite INa-L. Locus
((vii)–(viii)) traces phase 3 terminal repolarisation and a return
to electrophysiological diastole at the resting potential
((viii)–(ix)). Recovery from inactivation is favoured at mem-
brane potentials near to the resting potential and this then
permits re-excitation.

Importance of late Na+ current, INa-L

Figure 2a illustrates a presence of INa-L during the AP plateau
phase, whereas Fig. 2b illustrates circumstances of increased
INa-L. In addition to extending the plateau duration before AP
recovery, an increased INa-L can lead to the development of
various triggers and substrates for arrhythmogenesis. First, it
can cause diastolic depolarisation phenomena, which trigger

inappropriate APs in the sino-atrial node (SAN) and the po-
tentially pacemaking atrioventricular node (AVN) and His-
Purkinje cells. This can result in an abnormal automaticity
reduced by inhibiting such INa-L [23, 76]. Second, enhanced
INa-L can predispose to afterdepolarisations during or immedi-
ately following an AP [87]. Of these, early afterdepolarisations
(EADs) occur during phase 2 or 3 of a prolonged AP [5, 23].
This then causes a regenerative L-type Ca2+ channel re-activa-
tion, whilst the membrane remains depolarised during a
prolonged AP plateau phase. EADs have been observed both
in genetic conditions such as long QT syndrome (LQTS) and
acquired conditions such as cardiac failure [36]. Delayed
afterdepolarisations (DADs) follow full repolarisation in cells
with Ca2+ overload. These in turn predispose to depolarizing,
transient inward currents. Although smaller than the peak INa,
INa-L has a 50–100-fold longer duration and thereby can in-
crease cellular Na+ loading, in turn reducing the gradient for
Ca2+ efflux through sodium-calcium exchange current [58].
DADs may underlie arrhythmias seen in some heart
failure patients, patients with digitalis toxicity and pa-
tients with catecholaminergic polymorphic ventricular
tachycardia [5].

Third, the presence of INa-L also bears upon re-entrant
processes re-exciting recovered regions, thus furnishing ar-
rhythmic substrate perpetuating the initial arrhythmic event
[3]. INa-L upregulation by Anemonia sulcata toxin (ATX-II)
increased dispersion of repolarisation and refractoriness. This
could lead to the torsades de pointes associated with LQTS
[4]. Finally, INa-L also increases the slope of the AP duration
(APD) restitution curve relating AP duration to the diastolic
interval intervening between AP recovery and generation of
the subsequent AP during regular stimulation at successively
higher frequencies [59, 78]. A pathological INa-L upregulation
therefore promotes arrhythmic triggers and substrates through
a variety of pathways, summarised in Fig. 4.

INa-L and altered gNa activation

Increased INa-L thus potentially constitutes a final common
pathway explaining a wide range of pro-arrhythmic phenom-
ena. However, a wide range of alterations in either or both of
the biophysical properties of gNa activation and inactivation
(Fig. 5a) provide potential causative mechanisms for in-
creased INa-L. These range from alterations in maximum
gNa despite an otherwise unaltered activation-voltage
plot, as could occur following an increased surface
membrane Na+ channel expression (Fig. 5b). This situ-
ation would contrast with the consequences of some
Brugada syndrome cases, which contain a Nav1.5
haploinsufficiency [51].

In the remaining cases, changes in either the steady-state or
kinetic properties of activation and/or inactivation alters the
interrelationship between these curves. This determines the
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size of INa-L whether in the form of a prolonged opening of
Na+ channels or a re-opening of previously inactivated chan-
nels [58]. In situations in which there are overlap regions in
the steady-state activation and inactivation functions, an ex-
perimental situation involving the imposition of voltage clamp
steps would demonstrate a persistent steady-state equilibrium,
window current [48, 54]. Similar overlaps could occur prior to
achievement of a steady state. These would particularly arise

from the kinetics of either activation or inactivation that would
remain amenable to the graphical analysis adopted here.

Nevertheless, the relatively rapid kinetics of Na+ channel
activation over timescales substantially preceding recovery
processes related to INa-L permit its approximation by its
steady-state activation curve properties. A number of activa-
tion curve variants could then potentially influence the exis-
tence or magnitude of INa-L. Of these, negative shifts in the

n
o
r
m
a
li
z
e
d
 
g
N
a

membrane potential (mV)

i

0

1

membrane potential (mV)

n
o
r
m
a
li
z
e
d
 
g
N
a

0

1

ba

overlap region

activation process

steady-state activation curve

steady-state inactivation curve

abnormal activation curve increased overlap region

n
o
r
m
a
li
z
e
d
 
g
N
a

0

1

membrane potential (mV)

i

c

n
o
r
m
a
li
z
e
d
 
g
N
a

0

1

membrane potential (mV)

i

d
i

Fig. 5 Changes in the activation curve that would increase a depolarizing
INa (a). The normal activation curve and the activation trajectory
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voltage sensitivity, kact. This increases the overlap between the
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increasing the window current. d Increases in the voltage sensitivity,
corresponding to a decrease in kact. This increases the overlap between
the activation and inactivation curves and similarly increases INa-L by
increasing window current
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voltage dependence of activation quantified by negative
changes in Vact have been reported with genetic modification
in either the Nav1.5 α- or β-subunits [27]. Alternatively, this
negative change could occur in situations shifting the electric
field seen by the voltage sensor for activation with reductions
in external or increases in internal Ca2+ or Mg2+ concentration
(Fig. 5c) [52, 73, 75]. These would shift the foot of the acti-
vation voltage curve closer to the threshold voltage and in-
crease the likelihood of re-activation phenomena. In addition,
an increased steepness in the activation curve (Fig. 5d) quan-
tified by a decrease in kact and therefore an increase in the
effective valency z could arise in mutations affecting the
charge on the voltage sensor controlling Na+ channel gating.

INa-L and altered gNa inactivation

Figure 6a illustrates both steady state and a family of curves
(dotted lines) representing the kinetics of inactivation follow-
ing a depolarizing voltage step, which explores the develop-
ment of inactivation independently of its recovery. Both pos-
itive shifts, with increased Vinact (Fig. 6b) or a decreased steep-
ness with increased kinact, of steady-state inactivation (Fig. 6c),
could increase overlap between steady-state activation and

inactivation, accentuating INa-L through an increased window
current. In addition, alterations in inactivation kinetics could
take place incidental to such shifts in steady-state inactivation
or in a presence of otherwise normal steady-state properties. A
slowing of the kinetics even in the absence of any steady-state
abnormality (Fig. 6d) could result in a further mechanism of
increasing INa-L manifested in bursting phenomena. Bursting
reflects a transient kinetic failure of Na+ channel inactivation.
The resulting gating mode is associated with a small propor-
tion of the channels alternating between the last closed avail-
able state and open state (Fig. 1), and these frequent openings
could give rise to INa-L [18, 79].

Finally, voltage steps restoring the resting membrane po-
tential drive Na+ channel recovery from inactivation over a
refractory period (Fig. 7a). As in the case of inactivation,
recovery kinetics can similarly follow altered (Fig. 7b) or take
place in the presence of normal steady-state voltage depen-
dencies of inactivation (Fig. 7c). This can increase INa-L by a
non-equilibrium gating process. The latter could cause chan-
nel re-opening due to a decreased recovery time from
inactivation during the terminal repolarisation phase of the
AP. This re-opening could take place beyond the overlap re-
gion between steady-state activation and inactivation curves.
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kinact. This increases the overlap between activation and inactivation
curves. This therefore increases INa-L by increasing window current. c
Increase in kinact decreasing the steepness of the inactivation curve.
This also increases the overlap between the activation and
inactivation curves, again increasing INa-L by increasing window
current. d Slowing of inactivation kinetics. At any given time, the
transient inactivation curves then assume higher values than shown
by the normal transient inactivation curves. As a result, at any given
time, fewer Na+ channels are inactivated, giving a higher sustained
INa-L potentially producing bursting behaviour
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Thus, rapid recovery of a small subpopulation of the channels
from inactivation permits their immediate re-activation [19].
Even following full restoration of the resting membrane at the
end of the step, the examples in Fig. 7b, c may show similarly
altered recovery kinetics. Such altered kinetics might reflect
shifted steady-state inactivation curves, which would
corespondingly shift rate constants involving inactivation or
recovery from inactivation along the voltage axis. They could
also result from alterations in the rate constants themselves.
Either would alter rates of recovery from inactivation at a
given voltage.

INa-L and clinical genetic arrhythmic conditions

The previous sections thus suggest a hypothesis invoking a
convergence of a range of Na+ channel activation and inacti-
vation abnormalities, all of which produce INa-L. Table 1 sum-
marises a selection of experimental studies using expression
systems of a range of inherited clinical mutations in human
SCN5A, all of which have been associated with increased INa-
L. It confirms that each mutation results in characteristics il-
lustrating one or more of all the biophysical examples
discussed above as illustrated by Figs. 5, 6 and 7.
Conversely, the mutations in the table cover all these biophys-
ical cases when taken together. Thus, an enhanced INa-L can
result from a large variety of abnormalities in Na+ chan-
nel gating.

In particular, Table 1 illustrates the above points in detail
for long QT syndrome type 3 (LQTS3) using the relatively
large number of examples from which selections can be made
for analysis [33, 49, 55, 61, 65, 72, 85]. LQTS3 is one of a
range of genetic (LQTS1–LQTS13) long QT syndromes
characterised by prolonged QT intervals, reflecting increased
ventricular APD and additional aberrant T-wave ECG signa-
tures. They are all associated with a predisposition to normally
self-terminating episodic polymorphic ventricular tachycardia
(VT), torsades de pointes (TdP), with the potential to degen-
erate into ventricular fibrillation and/or SCD [2]. LQTS3 pa-
tients commonly exhibit bradycardia, and they show a greater
risk of arrhythmia at lower heart rates, such as during rest and
sleep [64]. The most common mechanism of LQTS3 patho-
physiology is the disruption of the fast inactivation kinetics of
the channel, enhancing INa-L [30]. However, the list of muta-
tions in Table 1 suggests that each hypothetical alteration in
activation and inactivation properties proposed above is asso-
ciated with a particular case of LQTS3. The one exception
concerns situations resulting in an increased steepness of the
activation-voltage relationship and a consequent decrease in
kact. Nevertheless, the latter phenotype was represented in the
particular, R225P and R814W, mutations. These are associat-
ed with complex arrhythmias combined with dilated cardio-
myopathy. They showed an increased voltage sensitivity of
the Na+ channel. This took the form of a decrease in kact
without any change in the inactivation curve [53].
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Fig. 7 Changes in the recovery from inactivation following the
repolarizing phase ending a voltage step. The membrane potential is
returned to a negative voltage near the resting potential. a The normal
recovery from inactivation processes represented by upward pointing
arrows proceed through a succession of transient inactivation curves

approaching the steady-state inactivation curve at full recovery. The
length of the arrow denotes the rapidity of the process. b Positive shift in
the voltage dependence of recovery from inactivation increases the overlap
between activation and inactivation. c Faster kinetics for the recovery from
inactivation also increases this overlap. Both situations increase INa-L
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Conversely, a given INa-L phenotype could be associated with
a wide range of clinical manifestations in different patients. In
addition to LQTS3, these include sudden infant death syndrome
(SIDS), multifocal ectopic Purkinje-related premature contrac-
tions (MEPPC) and atrial fibrillation (AF). SIDS is a significant
cause of infantmortality, and arrhythmias are an important cause
of SIDS, with inherited LQTS making up 9.5% of SIDS cases
[6]. The S1333Y mutation in Table 1 associated with SIDS
involves the domain III S4–S5 linker near the proposed docking
site of regions implicated in channel inactivation. The mutant
channel showed enhanced window and persistent inward cur-
rents, producing a LQTS3-like phenotype [34]. This mutation
led to changes in both activation and inactivation processes that
taken together would tend to increase INa-L. Thus, the S1333Y
mutation resulted in an increased maximum gNa, a negatively
shifted Vact but a positively shifted Vinact. There was also a more
rapid recovery from inactivation. However, there does exist a
A1330P mutation that has similar ionic channel effects and also
causes SIDS, yet does not produce enhanced INa-L [34].

The autosomal dominant MEPPC syndrome is associated
with an arrhythmia characterised by premature ventricular

contractions that originate from ectopic foci along the
fascicular-Purkinje system. This results in non-sustained VT
and, depending on its severity, SCD [47]. A consistently ob-
served window current may increase the excitability of the
fascicular-Purkinje system [47]. Table 1 exemplifies one partic-
ular R222Q mutation, which clearly co-segregated with the
MEPPC phenotype. This was uniformly present in three unrelat-
ed families, and dilated cardiomyopathy appeared as a secondary
consequence. The triggered APs and premature ventricular con-
tractions were attributed to altered voltage dependencies of
Nav1.5 activation. They were absent at higher pacing frequen-
cies, consistent with their disappearance during exercise [43].
Accordingly, as shown in Table 1, thisMEPPCmutation resulted
in a negatively shifted Vact.

AF is an abnormal heart rhythm manifesting as rapid, ir-
regular beating and palpitations; dyspnoea; dizziness; and
chest pain [41, 55]. The gain-of-function K1493R mutation
associated with AF showed a positively shifted Vinact that
would increase the window current and reduce the excitation
threshold and a slowed kinetics for inactivation [46].
However, mutations in genes other than SCN5A have also
been associated with AF, including SCN10A and SCN1B.

Table 1 Biophysical characterisation of a selection of SCN5A mutations related to an increased INa-L and clinical arrhythmic syndromes

Mutation Increased
maximum
gNa

Negatively
shifted Vact

Decreased
kact

Positively
shifted
Vinact

Increased
kinact

Slowed
inactivation
kinetics

Accelerated
recovery
from
inactivation

Reference

Long QT syndrome

p.R1644H − − − − − − + [49]

p.H1849R + − − + − + − [55]

R1626P − − − − + − − [65]

P1332L − + − − − − − [65]

M1652R − − − + − − + [65]

S216L + + − − − − − [61]

R568H + − − + − − − [61]

A572D + − − − − + + [61]

V411M − + − − − − − [33]

L409P/R558 − − − + − − + [85]

P2006A − − − + − − + [72]

Complex arrhythmia and dilated cardiomyopathy

R225P + + + − + − − [53]

R814W − + + − − − − [53]

Sudden infant death syndrome

S1333Y + + − + − − + [34]

Multifocal ectopic Purkinje-related premature contractions

p.R222Q − + − − − − − [43]

Atrial fibrillation

p.H1849R + − − + − + − [55]

K1493R − − − + − + − [46]

Exercise-induced polymorphic arrhythmia

p.I141V − + − − − − − [77]
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SCN10A encodes the voltage-gated Nav1.8 known to be high-
ly expressed in intracardiac neurons [84]. Its role is not fully
understood but mutations in it are associated with disease
phenotypes. Thus, the A1073 variant increases risks of AF
consistent with functional studies, demonstrating increased
peak INa, increased INa-L and prolonged fast inactivation
[35]. Although peak Nav1.8 current is much smaller than peak
Nav1.5 current, INa-L arising from Nav1.8 is 20–50 times
higher than INa-L arising from Nav1.5. Therefore, Nav1.8-me-
diated INa-L could strongly influence APD [35]. Finally, a
given INa-L phenotype could be associated with more than
one clinical manifestation. Thus, a negatively shifted Vact aris-
ing from three different mutations, P1332L, p.R222Q and
p.I141V, gave LQTS3, MEPPC and exercise-induced poly-
morphic arrhythmia, respectively [43, 65, 77].

INa-L as a pharmacological target

Increased INa-L thus potentially triggers and provides substrate
for arrhythmia under diverse circumstances. The analysis
above would indicate that potential therapeutic candidates
should target INa-L through their action on the steady-state
voltage dependence of Na+ channel activation and/or inacti-
vation and their kinetic properties. This would require such
action to take directions and extents appropriate to minimizing
INa-L in the particular condition concerned. Such an action
could be further enhanced if the applied agent selectively
acted upon INa-L as opposed to peak INa.

This strategy is exemplified by recent explorations directed
at paramyotonia congenita in skeletal muscle. For example,
the anticonvulsant lamotrigine negatively shifted the inactiva-
tion V1/2, modifying inactivation kinetics and decreasing INa,
in a HEK293 expression system expressing Nav1.4 [56].
Rufinamide positively shifted the voltage dependence of INa
activation in human Nav1.1 transiently expressed in Xenopus
oocytes [24]. Both lamotrigine and rufinamide at concentra-
tions appropriate for achieving clinical anticonvulsant activity
reduced myotonia in isolated human and rat skeletal muscle
[74]. This could provide a model for selective therapeutic
modifications of activation and inactivation in the cardiac
Nav1.5 channel. These could be targeted at patients with par-
ticular specific genetic mutations if their underlying electro-
physiological abnormalities could be characterised in order to
predict their response to these drugs. The latter in turn could
prompt clinical trials to assess the efficacy of the resulting INa-
L inhibitors on the arrhythmic variants concerned.

Studies investigating the precise effects of INa-L inhibitors
on the biophysical properties of the Na+ channel could lead to
therapy targeted at cardiac arrhythmias associated with in-
creased INa-L. LQTS patients who responded well to
mexiletine carried mutations resulting in a negative shift in
Vact, whereas patients whose QT intervals were not modified
in response to mexiletine did not have a negative shift in Vact

[65]. This has implications in that it may be necessary to target
the specific biophysical alteration in Na+ channel function to
effectively inhibit the pro-arrhythmic effects of INa-L. This
would require further investigations of its biophysical actions
onmutant Nav1.5. However, mexiletine did not affect voltage-
dependent activation but negatively shifted steady-state fast
and slow inactivation and markedly prolonged recovery from
inactivation of Nav1.5. These actions culminated in a use-
dependent INa block in expressed WT Na+ channels [86].
Nevertheless, mexiletine rescued negatively shifted steady-
state activation voltage dependencies in SCN7A-L858F-mu-
tated channels [20].

Recent reports have shown that ranolazine was 9 to 45
times more selective in inhibiting INa-L than peak INa in iso-
lated canine ventricular myocytes [82]. It decreased QTc in-
terval in a group of eight LQTS3 patients carrying SCN5A-
D1790G. The blocking effect of ranolazine on INa-L was reca-
pitulated in a TSA201 expression system [16]. Meta-analysis
showed that ranolazine significantly reduced incidences of AF
relative to control groups in various clinical settings [26, 66].
The trial compound GS-458967 similarly appeared to inhibit
INa-L in preference to peak INa particularly in the atria as op-
posed to the ventricles [11]. The further agent vernakalant
(RSD1235) did not show selectivity for INa-L over peak INa
[60].

Conclusions

Sodium currents (INa) are strategic to cardiac excitation and
are mediated by one or more Na+ channel components,
reflecting different states in the cardiac Nav1.5 or Na

+ channel
species that together culminate in peak INa and late INa-L com-
ponents. Accordingly, inherited Nav1.5 abnormalities can dis-
rupt AP generation, propagation and recovery to cause ar-
rhythmia. In particular, an increased INa-L leads to a variety
of arrhythmic conditions and can develop from various bio-
physical alterations in the overall activation and inactivation
gating properties of Nav1.5. Firstly, an increased overlap be-
tween the steady-state activation and inactivation functions
can increase window current. Secondly, a transient kinetic
failure of Na+ channel inactivation can lead to bursting phe-
nomena, characterised by frequent channel openings. Finally,
a non-equilibrium gating process can cause channel re-
opening due to a decreased recovery time from inactivation.
Available clinical evidence from different pro-arrhythmic
Nav1.5 mutations can be used to illustrate each of the wide
range of possible mechanisms. These various mechanisms for
increasing INa-L could provide a useful basis for the selection
of therapeutic agents for patients with the disease phenotype.
Selectively targeting the specific biophysical change underly-
ing the increased INa-L could improve efficacy and allow
mutation-specific therapy. This would require preclinical
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characterisation of how the drug compounds affect the bio-
physical properties of the INa-L. In turn, specifically tailored
drug intervention in patients with any given genetic mutation
would require characterisation of their underlying electro-
physiological abnormalities in order to predict their response
to these drugs.
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