918 research outputs found

    Rapid response to pandemic threats: immunogenic epitope detection of pandemic pathogens for diagnostics and vaccine development using peptide microarrays

    Get PDF
    Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2_{2}, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2_{2}, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats

    Wheat Variety-Specific Grain Yield Response to Plant Density Under Intensive Management Conditions in Western Kansas

    Get PDF
    Seeding rate determines the first yield component of field crops, which is the plant population. However, wheat is less responsive to plant populations than other crops due to the high plasticity in tillering potential, and this responsiveness depends on resource availability. The objective of this project was to evaluate winter wheat popu­lation, grain yield, and grain test weight responses to seeding rate and its interaction with variety in a highly managed production system where manageable stresses were limited. Experiments evaluating the response of the wheat varieties ‘Joe,’ ‘WB-Grain­field,’ ‘Langin,’ and ‘LCS Revere’ to seeding rates ranging from 200,000–1,000,000 seeds per acre were established in a field managed by growers who consistently win state and national wheat yield contests near Leoti, KS. Trials were established at a relatively late date in 2017–2018 (delayed by pre-sowing rainfall), and at the optimal timing during 2018–2019. Growing seasons contrasted in that 2017–2018 was dry (approximately 6 inches in-season precipitation) and had warm grain filling condi­tions, and 2018–2019 was cool and moist (appx. 13 inches in-season precipitation). Stand count increased with increases in seeding rate both years but final population was closer to the target population during 2017–2018. Grain yield response to seeding rate and to variety depended on year, but all varieties responded similarly to seeding rate. In 2017–2018, grain yield increased linearly from appx. 40–60 bushels per acre with increases in seeding rate from 200,000–400,000 seeds per acre. During 2018–2019, the lowest yield was recorded across varieties in the plots with 200,000 seeds per acre, with the treatments ranging from 400,000–1,000,000 seeds per acre all resulting in the same yield level. Grain yield as affected by emerged plant population (instead of seeding rate) showed similar trends, though quadratic relationships indicated a maximum yield at about 500,000–580,000 plants per acre in 2018–2019. Grain test weight was impacted by the interaction of variety, seeding rate, and year. Greatest test weight values resulted in 2017–2018, when the test weight of all varieties responded in a quadratic way to seeding rates. In 2018–2019, there was no clear trend in varieties’ test weight responses to population. These results suggest that wheat grain yield responses to seeding rate (and to plant population) are more dependent on sowing date and weather conditions than on variety, with optimum sowing times and a warm fall allowing for seeding rate as low as 400,000 seeds per acre without yield penalty. Meanwhile, later sowing dates and cooler fall conditions required seeding rates of up to 1,000,000 seeds per acre to maxi­mize grain yield

    Winter Wheat Variety-Specific Response to the Combination of Nitrogen and Foliar Fungicide in 2018–2019

    Get PDF
    Yield improvements to wheat can result both from variety selection and adoption of improved management practices. However, the yield response to improved manage­ment practices can be variety-specific and can result in decreases in protein concen­tration. Our objectives were to evaluate the yield and protein responses of different commercial winter wheat varieties to increased nitrogen (N) rates and application of foliar fungicides. We conducted a trial combining 20 winter wheat varieties and two management level intensities. The standard management consisted of N applied for a 75 bushel per acre yield goal and no fungicide; and intensive management consisted of an additional 40 pounds of N per acre and two fungicide applications—the first at jointing and the second at flag leaf emergence. The study was conducted at two Kansas locations (Great Bend, following a terminated cover crop; and Ashland Bottoms, following a previous soybean crop) during the 2018–2019 growing season. Grain yield ranged from 18–103 bushels per acre, with greatest yields recorded in the intensive management treatment in Great Bend and the lowest yields recorded in the standard management treatment in Ashland Bottoms. While there were no statistical differences in the varieties’ responses to intensive management, both the ranking of varieties and the yield increase from intensive management depended on location. Grain protein concentration ranged from 10.5–17.7% across all treatments, and the intensive manage­ment increased grain protein concentration from 12.7–13.9% in Ashland Bottoms and from 14.1–14.5% in Great Bend. The intensive management concomitantly increased grain yield and grain protein concentration at Ashland Bottoms, and increased grain yield while sustaining grain protein concentration at Great Bend, suggesting that total N removal in the grain increased with intensive management. While we did not inves­tigate the net profits from the intensive management, these results suggest that inten­sifying management on wheat could add income from additional yield produced and protein premiums, as long as these are available

    Malaria incidence and prevalence on Pemba Island before the onset of the successful control intervention on the Zanzibar Archipelago

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria incidence has been reported to decrease substantially in parts of sub-Saharan Africa, including the Zanzibar Archipelago in East Africa. A cohort study with an intensive follow-up on Pemba Island just before the onset of the highly successful malaria control intervention was conducted. The reported estimates of parasite prevalence and incidence can serve as a robust baseline to evaluate the effect size of the successful interventions and the potential contribution of quality controls and other factors associated with research studies in the decreased estimate of transmission.</p> <p>Methods</p> <p>In a rural clinic, two successive cohorts of 537 children total aged 2-23 months were followed for six months each with an intensive visitation schedule of bi-weekly follow-up. Robust estimates of incidence and prevalence according to four different malaria definitions were obtained.</p> <p>Results</p> <p>Malaria incidence and prevalence placed Pemba Island in a hyperendemic rather than holoendemic setting for the years 2003-2005. Overall parasite prevalence was estimated to be 39% - with monthly estimates varying between 30% and 50%. Incidence of malaria varied between 2.3 and 3.8 malaria episodes per year based on a diagnosis of fever and various microscopy-based parasite thresholds and between 4.8 and 5.7 based on a diagnosis of fever and 100 parasites/microliter analogous to detection by rapid diagnostic tests. Both parasite densities and malaria incidence increased with age and rainy season. Malaria incidence also varied substantially between the individual villages within the study area.</p> <p>Conclusions</p> <p>Pemba Island was previously considered holo-endemic for Malaria. The data suggest that the transmission situation on Pemba Island was significantly lower in 2003-2005 suggesting a hyper-endemic or meso-endemic transmission environment. The figures were obtained just before the onset of the highly successful malaria control intervention by impregnated bed nets and IRS on the Zanzibar Archipelago and provide robust estimates of the malaria transmission situation prior to the control programme. Together with other published data, the results suggest that malaria transmission had started to decrease before the onset of the control programme. The local heterogeneity in malaria incidence highlights the importance of a micro-epidemiological approach in the context of malaria control and elimination.</p
    corecore