8,575 research outputs found

    Observations of QSO J2233-606 in the Southern Hubble Deep Field

    Get PDF
    The Hubble Deep Field South (HDF-S) HST observations are expected to begin in October 1998. We present a composite spectrum of the QSO in the HDF-S field covering UV/optical/near IR wavelengths, obtained by combining data from the ANU 2.3m Telescope with STIS on the HST. This intermediate resolution spectrum covers the range 1600-10000A and allows us to derive some basic information on the intervening absorption systems which will be important in planning future higher resolution studies of this QSO.Comment: 9 pages and 2 figures, submitted to ApJ

    High-resolution mapping of cancer cell networks using co-functional interactions.

    Get PDF
    Powerful new technologies for perturbing genetic elements have recently expanded the study of genetic interactions in model systems ranging from yeast to human cell lines. However, technical artifacts can confound signal across genetic screens and limit the immense potential of parallel screening approaches. To address this problem, we devised a novel PCA-based method for correcting genome-wide screening data, bolstering the sensitivity and specificity of detection for genetic interactions. Applying this strategy to a set of 436 whole genome CRISPR screens, we report more than 1.5 million pairs of correlated "co-functional" genes that provide finer-scale information about cell compartments, biological pathways, and protein complexes than traditional gene sets. Lastly, we employed a gene community detection approach to implicate core genes for cancer growth and compress signal from functionally related genes in the same community into a single score. This work establishes new algorithms for probing cancer cell networks and motivates the acquisition of further CRISPR screen data across diverse genotypes and cell types to further resolve complex cellular processes

    The Major Sources of the Cosmic Reionizing Background at z ~ 6

    Full text link
    In this paper, we address which sources contributed most of the reionizing photons. Our argument assumes that the reionization ended around z ~ 6 and that it was a relatively quick process, i.e., that there was a non-negligible fraction of neutral hydrogen in the Universe at somewhat earlier epochs. Starting from our earlier estimate of the luminosity function (LF) of galaxies at z ~ 6, we quantitatively show that the major sources of reionization are most likely galaxies with L < L*. Our approach allows us to put stronger constraints to the LF of galaxies at z ~ 6. To have the Universe completely ionized at this redshift, the faint-end slope of the LF should be steeper than α=−1.6\alpha=-1.6, which is the value measured at lower redshifts (z ~ 3), unless either the normalization (Phi*) of the LF or the clumping factor of the ionized hydrogen has been significantly underestimated. If Phi* is actually lower than what we assumed by a factor of two, a steep slope close to α=−2.0\alpha=-2.0 is required. Our LF predicts a total of 50 -- 80 z ~ 6 galaxies in the HST Ultra Deep Field (UDF) to a depth of AB=28.4 mag, which can be used to constraint both Phi* and α\alpha. We conclude that the least luminous galaxies existing at this redshift should reach as low as some critical luminosity in order to accumulate the entire reionizing photon budget. On the other hand, the existence of significant amounts of neutral hydrogen at slightly earlier epochs, e.g. z ~ 7, requires that the least luminous galaxies should not be fainter than another critical value (i.e., the LF should cut-off at this point).Comment: ApJL in press (Jan 1, 2004 issue

    Impact of ETO propellants on the aerothermodynamic analyses of propulsion components

    Get PDF
    The operating conditions and the propellant transport properties used in Earth-to-Orbit (ETO) applications affect the aerothermodynamic design of ETO turbomachinery in a number of ways. Some aerodynamic and heat transfer implications of the low molecular weight fluids and high Reynolds number operating conditions on future ETO turbomachinery are discussed. Using the current SSME high pressure fuel turbine as a baseline, the aerothermodynamic comparisons are made for two alternate fuel turbine geometries. The first is a revised first stage rotor blade designed to reduce peak heat transfer. This alternate design resulted in a 23 percent reduction in peak heat transfer. The second design concept was a single stage rotor to yield the same power output as the baseline two stage rotor. Since the rotor tip speed was held constant, the turbine work factor doubled. In this alternate design, the peak heat transfer remained the same as the baseline. While the efficiency of the single stage design was 3.1 points less than the baseline two stage turbine, the design was aerothermodynamically feasible, and may be structurally desirable

    Hadronic contribution to the muon g-2: a theoretical determination

    Full text link
    The leading order hadronic contribution to the muon g-2, aμHADa_{\mu}^{HAD}, is determined entirely from theory using an approach based on Cauchy's theorem in the complex squared energy s-plane. This is possible after fitting the integration kernel in aμHADa_{\mu}^{HAD} with a simpler function of ss. The integral determining aμHADa_{\mu}^{HAD} in the light-quark region is then split into a low energy and a high energy part, the latter given by perturbative QCD (PQCD). The low energy integral involving the fit function to the integration kernel is determined by derivatives of the vector correlator at the origin, plus a contour integral around a circle calculable in PQCD. These derivatives are calculated using hadronic models in the light-quark sector. A similar procedure is used in the heavy-quark sector, except that now everything is calculable in PQCD, thus becoming the first entirely theoretical calculation of this contribution. Using the dual resonance model realization of Large NcN_{c} QCD to compute the derivatives of the correlator leads to agreement with the experimental value of aμa_\mu. Accuracy, though, is currently limited by the model dependent calculation of derivatives of the vector correlator at the origin. Future improvements should come from more accurate chiral perturbation theory and/or lattice QCD information on these derivatives, allowing for this method to be used to determine aμHADa_{\mu}^{HAD} accurately entirely from theory, independently of any hadronic model.Comment: Several additional clarifying paragraphs have been added. 1/N_c corrections have been estimated. No change in result

    Gravitational Lens Statistics and The Density Profile of Dark Halos

    Full text link
    We investigate the influence of the inner profile of lens objects on gravitational lens statistics taking into account of the effect of magnification bias and both the evolution and the scatter of halo profiles. We take the dark halos as the lens objects and consider the following three models for the density profile of dark halos; SIS (singular isothermal sphere), the NFW (Navarro Frenk White) profile, and the generalized NFW profile which has a different slope at smaller radii. The mass function of dark halos is assumed to be given by the Press-Schechter function. We find that magnification bias for the NFW profile is order of magnitude larger than that for SIS. We estimate the sensitivity of the lensing probability of distant sources to the inner profile of lenses and to the cosmological parameters. It turns out that the lensing probability is strongly dependent on the inner density profile as well as on the cosmological constant. We compare the predictions with the largest observational sample, the Cosmic Lens All-Sky Survey. The absence or presence of large splitting events in larger surveys currently underway such as the 2dF and SDSS could set constraints on the inner density profile of dark halos.Comment: 22 pages, minor changes and references added, accepted for publication in Ap

    Some continuum physics results from the lattice V-A correlator

    Get PDF
    We present preliminary results on extractions of the chiral LECs L_10 and C_87 and constraints on the excited pseudoscalar state pi(1300) and pi(1800) decay constants obtained from an analysis of lattice data for the flavor ud light quark V-A correlator. A comparison of the results for the correlator to the corresponding mildly-model-dependent continuum results (based primarily on experimental hadronic tau decay data) is also givenComment: 7 pages, 3 figures. Prepared for the Proceedings of the 30th International Symposium on Lattice Field Theory, Cairns, Australia, June 24-29, 2012; expanded version of Reference 1

    New results from the lattice on the theoretical inputs to the hadronic tau determination of V_us

    Get PDF
    Recent sum rule determinations of |V_us|, employing flavor-breaking combinations of hadronic tau decay data, are significantly lower than either expectations based on 3-family unitarity or determinations from K_ell3 and Gamma[K_mu2]/Gamma[pi_mu2]. We use lattice data to investigate the accuracy/reliability of the OPE representation of the flavor-breaking correlator combination entering the tau decay analyses. The behavior of an alternate correlator combination, constructed to reduce problems associated with the slow convergence of the D = 2 OPE series, and entering an alternate sum rule requiring both electroproduction cross-section and hadronic tau decay data, is also investigated. Preliminary updates of both analyses, with the lessons learned from the lattice data in mind, are also presented.Comment: 8 pages, 5 figures. Prepared for the proceedings of the 12th International Workshop on Tau Lepton Physics, Sep. 17-21, 2012, Nagoya, Japan and the 10th International Conference on Confinement and the Hadron Spectrum, Oct. 6-13, 2012, Garching/Munich, German
    • …
    corecore