313 research outputs found

    Examining exotic structure of proton-rich nucleus 23^{23}Al

    Full text link
    The longitudinal momentum distribution (P_{//}) of fragments after one-proton removal from ^{23} Al and reaction cross sections (\sigma_R) for ^{23,24} Al on carbon target at 74A MeV have been measured. The ^{23,24} Al ions were produced through projectile fragmentation of 135 A MeV ^{28} Si primary beam using RIPS fragment separator at RIKEN. P_{//} is measured by a direct time-of-flight (TOF) technique, while \sigma_R is determined using a transmission method. An enhancement in \sigma_R is observed for ^{23} Al compared with ^{24} Al. The P_{//} for ^{22} Mg fragments from ^{23} Al breakup has been obtained for the first time. FWHM of the distributions has been determined to be 232 \pm 28 MeV/c. The experimental data are discussed by using Few-Body Glauber model. Analysis of P_{//} demonstrates a dominant d-wave configuration for the valence proton in ground state of ^{23} Al, indicating that ^{23} Al is not a proton halo nucleus

    Friend of Prmt1, FOP is a novel component of the nuclear SMN complex isolated using biotin affinity purification

    Get PDF
    SMN (survival motor neuron protein) complexes are essential for the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). During the biogenesis, the SMN complexes bound to UsnRNPs are transported from the cytoplasm to the nucleus, and moved to Cajal body (bodies)/Gems (Cajal/Gems) where the SMN complexes- UsnRNPs are subjected to additional chemical modifications and dissociated to the SMN complexes and the mature UsnRNPs. Although the mature UsnRNPs are assembled into spliceosome with newly transcribed pre-mRNA in the perichromatin fibrils at the chromatin, the role of the dissociated nuclear SMN complexes remains undetermined. In this study, we identified Friend of Prmt1 (FOP; chromatin target of Prmt1, CHTOP; C1orf77) as a novel component of the nuclear SMN complexes by the biotin affinity purification, coupled with the mass spectrometry-based protein identification. FOP was associated with SMN, Gemines 2, 3, 4, 6, and 8, unrip, and fragile X mental retardation 1 protein (FMR1), as well as with U5and U6 snRNAs in the nucleus, but not with Sm proteins, Gemin5, coilin, and U1 and U2snRNAs. Using the quantitative proteomic method with SILAC coupled with RNA interference, we also showed that FOP is required for the association of the SMN complexes with hnRNPs, histone proteins, and various RNA-binding proteins. It is reported that FOP localizes mainly in the nuclear speckles, binds chromatin, and plays a role in mRNA transcriptional regulation. Our present data suggest that the nuclear SMN complex containing FOP participates in the process of mRNA post-transcriptional regulation

    Experimental arthritis induced by a clinical Mycoplasma fermentans isolate

    Get PDF
    BACKGROUND: Mycoplasma fermentans has been associated with rheumatoid arthritis. Recently, it was detected in the joints and blood of patients with rheumatoid arthritis, but it is not clear yet how the bacteria enter the body and reach the joints. The purpose of this study was to determine the ability of M. fermentans to induce experimental arthritis in rabbits following inoculation of the bacteria in the trachea and knee joints. METHODS: P-140 and PG-18 strains were each injected in the knee joints of 14 rabbits in order to evaluate and compare their arthritogenicity. P-140 was also injected in the trachea of 14 rabbits in order to test the ability of the bacteria to reach the joints and induce arthritis. RESULTS: M. fermentans produced an acute arthritis in rabbits. Joint swelling appeared first in rabbits injected with P-140, which caused a more severe arthritis than PG-18. Both strains were able to migrate to the uninoculated knee joints and they were detected viable in the joints all along the duration of the experiment. Changes in the synovial tissue were more severe by the end of the experiment and characterized by the infiltration of neutrophils and substitution of adipose tissue by connective tissue. Rabbits intracheally injected with P-140 showed induced arthritis and the bacteria could be isolated from lungs, blood, heart, kidney, spleen, brain and joints. CONCLUSION: M. fermentans induced arthritis regardless of the inoculation route. These findings may help explain why mycoplasmas are commonly isolated from the joints of rheumatic patients

    Measurement of the spin and magnetic moment of 23Al

    Get PDF
    For the first time, we obtained the g factor for the ground state of 23Al by use of a -NMR measurement. 23Al has a small proton separation energy and is a potential proton-halo candidate. The obtained g factor, |g|=1.557±0.088, clearly shows the spin and parity, J=5/2+, for 23Al, which is the same as that of its mirror partner, 23Ne. The possible nuclear structure of 23Al is also discussed

    TDP-43 stabilises the processing intermediates of mitochondrial transcripts

    Get PDF
    The 43-kDa trans-activating response region DNA-binding protein 43 (TDP-43) is a product of a causative gene for amyotrophic lateral sclerosis (ALS). Despite of accumulating evidence that mitochondrial dysfunction underlies the pathogenesis of TDP-43–related ALS, the roles of wild-type TDP-43 in mitochondria are unknown. Here, we show that the small TDP-43 population present in mitochondria binds directly to a subset of mitochondrial tRNAs and precursor RNA encoded in L-strand mtDNA. Upregulated expression of TDP-43 stabilised the processing intermediates of mitochondrial polycistronic transcripts and their products including the components of electron transport and 16S mt-rRNA, similar to the phenotype observed in cells deficient for mitochondrial RNase P. Conversely, TDP-43 deficiency reduced the population of processing intermediates and impaired mitochondrial function. We propose that TDP-43 has a novel role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts

    Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea

    Get PDF
    Background: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. Methodology/Principal Findings: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca’s, suggesting genetic background influences the rate of re-organisation

    Contribution of CgPDR1-Regulated Genes in Enhanced Virulence of Azole-Resistant Candida glabrata

    Get PDF
    In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata virulence in animal models, thus indicating that CgPDR1 might regulate the expression of yet unidentified virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s) should be commonly regulated by all GOF mutations in CgPDR1. As deduced from transcript profiling with microarrays, a high number of genes (up to 385) were differentially regulated by a selected number (7) of GOF mutations expressed in the same genetic background. Surprisingly, the transcriptional profiles resulting from expression of GOF mutations showed minimal overlap in co-regulated genes. Only two genes, CgCDR1 and PUP1 (for PDR1 upregulated and encoding a mitochondrial protein), were commonly upregulated by all tested GOFs. While both genes mediated azole resistance, although to different extents, their deletions in an azole-resistant isolate led to a reduction of virulence and decreased tissue burden as compared to clinical parents. As expected from their role in C. glabrata virulence, the two genes were expressed as well in vitro and in vivo. The individual overexpression of these two genes in a CgPDR1-independent manner could partially restore phenotypes obtained in clinical isolates. These data therefore demonstrate that at least these two CgPDR1-dependent and -upregulated genes contribute to the enhanced virulence of C. glabrata that acquired azole resistance
    corecore