1,015 research outputs found
Competition between spin and charge polarized states in nanographene ribbons with zigzag edges
Effects of the nearest neighbor Coulomb interaction on nanographene ribbons
with zigzag edges are investigated using the extended Hubbard model within the
unrestricted Hartree-Fock approximation. The nearest Coulomb interaction
stabilizes a novel electronic state with the opposite electric charges
separated and localized along both edges, resulting in a finite electric dipole
moment pointing from one edge to the other. This charge-polarized state
competes with the peculiar spin-polarized state caused by the on-site Coulomb
interaction and is stabilized by an external electric field.Comment: 4 pages; 4 figures; accepted for publication in Phys. Rev. B; related
Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm
Nine genes abundantly expressed in the epididymis are not essential for male fecundity in mice
Noda, T., Sakurai, N., Nozawa, K., Kobayashi, S., Devlin, D. J., Matzuk, M. M., & Ikawa, M. (2019). Nine genes abundantly expressed in the epididymis are not essential for male fecundity in mice. Andrology, 7(5), 644-653. doi:10.1111/andr.1262
Low-loss Materials for high Q-factor Bragg Reflector Resonators
A Bragg resonator uses dielectric plates within a metallic cavity to confine
the energy within a central free space region. The importance of the
permittivity is shown with a better Q-factor possible using higher permittivity
materials of larger intrinsic dielectric losses. This is because the electric
energy in the reflectors decreases proportionally to the square root of
permittivity and the coupling to the metallic losses decrease linearly. In a
sapphire resonator with a single reflector pair a Q-factor of 2.34x10^5 is
obtained, which may be improved on by up to a factor of 2 using higher
permittivity materials
Resolvent estimates for normally hyperbolic trapped sets
We give pole free strips and estimates for resolvents of semiclassical
operators which, on the level of the classical flow, have normally hyperbolic
smooth trapped sets of codimension two in phase space. Such trapped sets are
structurally stable and our motivation comes partly from considering the wave
equation for Kerr black holes and their perturbations, whose trapped sets have
precisely this structure. We give applications including local smoothing
effects with epsilon derivative loss for the Schr\"odinger propagator as well
as local energy decay results for the wave equation.Comment: Further changes to erratum correcting small problems with Section 3.5
and Lemma 4.1; this now also corrects hypotheses, explicitly requiring
trapped set to be symplectic. Erratum follows references in this versio
Notch signaling during human T cell development
Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse
Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock.
Fustin, J.-M., Kojima, R., Itoh, K., Chang, H.-Y., Shiqi, Y., Zhuang, B., . . . Okamura, H. (2018). Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5980-5985. doi:10.1073/pnas.172137111
Expression Profiling of PBMC-based Diagnostic Gene Markers Isolated from Vasculitis Patients
Vasculitis (angiitis) is a systemic autoimmune disease that often causes fatal symptoms. We aimed to isolate cDNA markers that would be useful for diagnosing not only vasculitis but also other autoimmune diseases. For this purpose, we used stepwise subtractive hybridization and cDNA microarray analyses to comprehensively isolate the genes whose expressions are augmented in peripheral blood mononuclear cells (PBMCs) pooled from vasculitis patients. Subsequently, we used quantitative real-time polymerase chain reaction (qRT–PCR) to examine the mRNA levels of each candidate gene in individual patients. These analyses indicated that seven genes exhibit remarkably augmented expression in many vasculitis patients. Of these genes, we analyzed G0/G1 switch gene 2 (G0S2) further because G0S2 expression is also enhanced in the PBMCs of patients with systemic lupus erythematodes (SLE). We generated G0S2 transgenic mice that ubiquitously overexpress human G0S2. Although we did not observe any obvious vasculitis-related histopathologic findings in these mice, these mice are unhealthy as they produce only few offspring and showed elevated serum levels of two autoimmunity-related antibodies, anti-nuclear antibody, and anti-double strand DNA antibody. Thus, our large-scale gene profiling study may help finding sensitive and specific DNA markers for diagnosing autoimmune diseases including vasculitis and SLE
Characterization of Developmental Pathway of Natural Killer Cells from Embryonic Stem Cells In Vitro
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(−) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(−) EB cells showed that CD45(+)Mac-1(−)Ter119(−) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(−)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(−) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(−) and they rapidly acquire CD122 as they differentiate along the NK lineage
- …