147 research outputs found

    Els moviments agraris i llurs condicions històriques

    Get PDF

    Stressing the Ubiquitin-Proteasome System without 20S Proteolytic Inhibition Selectively Kills Cervical Cancer Cells

    Get PDF
    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine

    The Anticoagulation of Calf Thrombosis (ACT) project: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Half of all lower limb deep vein thrombi (DVT) in symptomatic ambulatory patients are located in the distal (calf) veins. While proximal disease warrants therapeutic anticoagulation to reduce the associated risks, distal DVT often goes untreated. However, a proportion of untreated distal disease will undoubtedly propagate or embolize. Concern also exists that untreated disease could lead to long-term post thrombotic changes. Currently, it is not possible to predict which distal thrombi will develop such complications. Whether these potential risks outweigh those associated with unrestricted anticoagulation remains unclear. The Anticoagulation of Calf Thrombosis (ACT) trial aims to compare therapeutic anticoagulation against conservative management for patients with acute symptomatic distal deep vein thrombosis.</p> <p>Methods</p> <p>ACT is a pragmatic, open-label, randomized controlled trial. Adult patients diagnosed with acute distal DVT will be allocated to either therapeutic anticoagulation or conservative management. All patients will undergo 3 months of clinical and assessor blinded sonographic follow-up, followed by 2-year final review. The project will commence initially as an external pilot study, recruiting over a 16-month period at a single center to assess feasibility measures and clinical event rates. Primary outcome measures will assess feasibility endpoints. Secondary clinical outcomes will be collected to gather accurate data for the design of a definitive clinical trial and will include: (1) a composite endpoint combining thrombus propagation to the popliteal vein or above, development of symptomatic pulmonary embolism or sudden death attributable to venous thromboembolic disease; (2) the incidence of major and minor bleeding episodes; (3) the incidence of post-thrombotic leg syndrome at 2 years using a validated screening tool; and (4) the incidence of venous thromboembolism (VTE) recurrence at 2 years.</p> <p>Discussion</p> <p>The ACT trial will explore the feasibility of comparing therapeutic anticoagulation to conservative management in acute distal DVT, within a modern cohort. We also aim to provide contemporary data on clot propagation, bleeding rates and long-term outcomes within both groups. These results will inform the conduct of a definitive study if feasibility is established.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN75175695">ISRCTN75175695</a></p

    Genetic Dissection of Epidermal Growth Factor Receptor Signaling during Luteinizing Hormone-Induced Oocyte Maturation

    Get PDF
    Recent evidence that luteinizing hormone (LH) stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR) has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfrdelta/f Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle

    The GALAH+ Survey : Third Data Release

    Get PDF
    © 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab1242The ensemble of chemical element abundance measurements for stars, along with precision distances and orbit properties, provides high-dimensional data to study the evolution of the Milky Way. With this third data release of the Galactic Archaeology with HERMES (GALAH) survey, we publish 678 423 spectra for 588 571 mostly nearby stars (81.2% of stars are within 75 stellar clusters. We derive stellar parameters TeffT_\text{eff}, logg\log g, [Fe/H], vmicv_\text{mic}, vbroadv_\text{broad} & vradv_\text{rad} using our modified version of the spectrum synthesis code Spectroscopy Made Easy (SME) and 1D MARCS model atmospheres. We break spectroscopic degeneracies in our spectrum analysis with astrometry from GaiaGaia DR2 and photometry from 2MASS. We report abundance ratios [X/Fe] for 30 different elements (11 of which are based on non-LTE computations) covering five nucleosynthetic pathways. We describe validations for accuracy and precision, flagging of peculiar stars/measurements and recommendations for using our results. Our catalogue comprises 65% dwarfs, 34% giants, and 1% other/unclassified stars. Based on unflagged chemical composition and age, we find 62% young low-α\alpha, 9% young high-α\alpha, 27% old high-α\alpha, and 2% stars with [Fe/H]1\mathrm{[Fe/H]} \leq -1. Based on kinematics, 4% are halo stars. Several Value-Added-Catalogues, including stellar ages and dynamics, updated after GaiaGaia eDR3, accompany this release and allow chrono-chemodynamic analyses, as we showcase.Peer reviewe

    Updated Guidance Regarding The Risk ofAllergic Reactions to COVID-19 Vaccines and Recommended Evaluation and Management: A GRADE Assessment, and International Consensus Approach

    Get PDF
    This guidance updates 2021 GRADE (Grading of Recommendations Assessment, Development and Evaluation) recommendations regarding immediate allergic reactions following coronavirus disease 2019 (COVID-19) vaccines and addresses revaccinating individuals with first-dose allergic reactions and allergy testing to determine revaccination outcomes. Recent meta-analyses assessed the incidence of severe allergic reactions to initial COVID-19 vaccination, risk of mRNA-COVID-19 revaccination after an initial reaction, and diagnostic accuracy of COVID-19 vaccine and vaccine excipient testing in predicting reactions. GRADE methods informed rating the certainty of evidence and strength of recommendations. A modified Delphi panel consisting of experts in allergy, anaphylaxis, vaccinology, infectious diseases, emergency medicine, and primary care from Australia, Canada, Europe, Japan, South Africa, the United Kingdom, and the United States formed the recommendations. We recommend vaccination for persons without COVID-19 vaccine excipient allergy and revaccination after a prior immediate allergic reaction. We suggest against \u3e 15-minute postvaccination observation. We recommend against mRNA vaccine or excipient skin testing to predict outcomes. We suggest revaccination of persons with an immediate allergic reaction to the mRNA vaccine or excipients be performed by a person with vaccine allergy expertise in a properly equipped setting. We suggest against premedication, split-dosing, or special precautions because of a comorbid allergic history

    Cyclic and Sleep-Like Spontaneous Alternations of Brain State Under Urethane Anaesthesia

    Get PDF
    Background: Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state. Methodology/Principal Findings: Long-duration, multi-site forebrain field recordings were performed in urethaneanaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (,11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane. Conclusions/Significance: Our results suggest that urethane promotes a condition of behavioural unconsciousness tha
    corecore