686 research outputs found

    Influence of Domain Wall on Magnetocaloric Effect in GdPt2_{2}

    Full text link
    The resistivity, magnetoresistance and in-field heat capacity measurements were performed on GdPt2_{2} intermetallic compound. The magnetocaloric parameters ΔTad\Delta T_{ad} and ΔS-\Delta S were derived from the in-field heat capacity data. Comparison has been made between the magnetocaloric effect ΔS-\Delta S and difference in resistivity Δρ-\Delta \rho (=ρ(H)ρ(0))(=\rho(H)-\rho(0)) as a function of temperature. There is distinct difference in the temperature dependence of ΔS-\Delta S and Δρ-\Delta \rho below the ferromagnetic transition temperature. However after removing the domain wall contribution from Δρ-\Delta \rho, the nature of ΔS-\Delta S and Δρ-\Delta \rho dependence as a function of temperature are similar. Our observation indicates that the domain wall contribution in magnetocaloric effect is negligible in spite of the fact that it has significant contribution in magnetotransport.Comment: RevTex 4 pages, 6 figure

    Crystal growth and ambient and high pressure study of the reentrant superconductor Tm_2Fe_3Si_5

    Full text link
    We report single crystal growth of the reentrant superconductor Tm_2Fe_3Si_5, and measurements of the anisotropic static magnetic susceptibility \chi(T) and isothermal magnetization M(H), ac susceptibility \chi_ac(T), electrical resistivity \rho(T) and heat capacity C(T) at ambient pressure and \chi_ac(T) at high pressure. The magnetic susceptibility along the c-axis \chi_c(T) shows a small maximum around 250 K and does not follow the Curie-Weiss behavior while the magnetic susceptibility along the a-axis \chi_a(T) follows a Curie-Weiss behavior between 130 K and 300 K with a Weiss temperature \theta and an effective magnetic moment \mu_eff which depend on the temperature range of the fit. The easy axis of magnetization is perpendicular to the c-axis and \chi_a/\chi_c = 3.2 at 1.8 K. The ambient pressure \chi_ac(T) and C(T) measurements confirm bulk antiferromagnetic ordering at T_N = 1.1 K. The sharp drop in \chi_ac below T_N is suggestive of the existence of a spin-gap. We observe superconductivity only under applied pressures P\geq 2 kbar. The temperature-pressure phase diagram showing the non-monotonic dependence of the superconducting transition temperature T_c on pressure P is presented.Comment: 7 pages, 8 figure

    Geometrical effects on spin injection: 3D spin drift diffusion model

    Full text link
    We discuss a three-dimensional (3D) spin drift diffusion (SDD) model to inject spin from a ferromagnet (FM) to a normal metal (N) or semiconductor (SC). Using this model we investigate the problem of spin injection into isotropic materials like GaAs and study the effect of FM contact area and SC thickness on spin injection. We find that in order to achieve detectable spin injection a small contact area or thick SC samples are essential for direct contact spin injection devices. We investigate the use of thin metal films (Cu) proposed by S.B. Kumar et al. and show that they are an excellent substitute for tunnelling barriers (TB) in the regime of small contact area. Since most tunnelling barriers are prone to pinhole defects, we study the effect of pinholes in AlO tunnelling barriers and show that the reduction in the spin-injection ratio (γ\gamma) is solely due to the effective area of the pinholes and there is no correlation between the number of pinholes and the spin injection ratio.Comment: 5 pages, 6 figures. Accepted by JA

    Photoemission investigation of the electronic structure of Fe-Pd and Fe-Pt alloys

    Get PDF
    A photoemission investigation of Fe-Pd and Fe-Pt transition-metal alloys, using ∼50–150-eV synchrotron radiation, is presented. We consider in particular the spectral distribution of Fe states when approaching the dilute limit. By means of the Cooper minimum in the 4d and 5d photoionization cross section, we identify structures that have mainly Fe minority- or Fe majority-spin character. The relative position of these peaks is discussed in terms of the covalent interaction between Fe 3d and Pd or Pt d states. Also, the strong resemblance between the distribution of Fe states in the Pd-based and in the Pt-based alloys is demonstrated. We find a consistent behavior of interacting d states towards the dilute limit. It is concluded that the Fe states that are observed in the photoemission spectra of the dilute alloys have mainly majority-spin character and are, because of the covalent interaction with host states, widely distributed over the energy range of the host d band. The Fe minority-spin band, which is centered near the Fermi level, gradually empties with increasing Fe dilution

    Origin of Middle-Infrared Peaks in Cerium Compounds

    Full text link
    We have demonstrated that the middle-infrared (mid-IR) peaks in the optical conductivity spectra of CeX3X_3 (XX = Pd, Sn, In) can be explained by first-principle band structure calculation with the spin-orbit interaction. The mid-IR peak shapes in these materials are not identical to one another: CePd3_3, CeSn3_3, and CeIn3_3 have a triple-peak structure, double-peak structure and broad single-peak structure, respectively. These peaks can be theoretically explained by the optical transition from the occupied state to the spin-orbit splitted Ce 4f4f state. This result indicates that the mid-IR peaks originate from the simple band picture with the Ce 4f4f state near the Fermi level, not from the conventional cf hybridization gap based on the periodic Anderson model.Comment: 5 pages, 6 figures. To be published in J. Phys. Soc. Jpn. 78(1) (2009

    Ab initio exchange interactions and magnetic properties of Gd2Fe17 iron sublattice: rhombohedral vs. hexagonal phases

    Full text link
    In the framework of the LSDA+U method electronic structure and magnetic properties of the intermetallic compound Gd2Fe17 for both rhombohedral and hexagonal phases have been calculated. On top of that, ab initio exchange interaction parameters within the Fe sublattice for all present nearest and some next nearest Fe ions have been obtained. It was found that for the first coordination sphere direct exchange interaction is ferromagnetic. For the second coordination sphere indirect exchange interaction is observed to be weaker and of antiferromagnetic type. Employing the theoretical values of exchange parameters Curie temperatures Tc of both hexagonal and rhombohedral phases of Gd2Fe17 within Weiss mean-field theory were estimated. Obtained values of Tc and its increase going from the hexagonal to rhombohedral crystal structure of Gd2Fe17 agree well with experiment. Also for both structures LSDA+U computed values of total magnetic moment coincide with experimental ones.Comment: 20 pages, 2 figures; V2 as published in PR

    Change of Magnetic Properties of Th₂Fe₁₇ Due to Interstitial Solution of C and N

    Get PDF
    The changes in magnetic and crystallographic properties in the series Th2Fe17Cx and Th2Fe 17Nx have been studied. The changes in the latter series were also studied by 57Fe Mössbauer spectroscopy. The ultimate enhancements of the saturation moments in these series are 13% and 24%, respectively. This is much larger than observed previously in the corresponding rare-earth compounds, although the Curie temperature enhancements are of comparable magnitude. In the Th-Fe-C system a novel compound of the BaCd 11 type was found, having a Curie temperature around 370 K

    Why the iron magnetization in Gd2Fe14B and the spontaneous magnetization of Y2Fe14B depend on temperature differently

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.It is demonstrated that the temperature dependence of the iron sublattice magnetization in Gd2Fe14B is affected significantly by the Gd-Fe exchange interaction. This is at variance with the common perception that MFe(T) in iron-rich rare-earth intermetallics is determined predominantly by the Fe-Fe exchange. This phenomenon is discussed by considering the modification of the low-energy spin-wave spectrum of Gd2Fe14B, as compared to that of Y2Fe14B, under the influence of the Gd-Fe interaction. The result is of particular significance for evaluating the temperature dependence of the magnetocrystalline anisotropy of iron or cobalt compounds with anisotropic rare earths (e.g., Nd2Fe14B) and in turn, of the hard magnetic properties of such compounds

    Can antiferromagnetism and superconductivity coexist in the high-field paramagnetic superconductor Nd(O,F)FeAs?

    Full text link
    We present measurements of the temperature and field dependencies of the magnetization M(T,H) of Nd(O0.89F0.11)FeAs at fields up to 33T, which show that superconductivity with the critical temperature Tc ~ 51K cannot coexist with antiferromagnetic ordering. Although M(T,H) at 55 < T < 140K exhibits a clear Curie-Weiss temperature dependence corresponding to the Neel temperature TN ~ 11-12K, the behavior of M(T,H) below Tc is only consistent with either paramagnetism of weakly interacting magnetic moments or a spin glass state. We suggest that the anomalous magnetic behavior of an unusual high-field paramagnetic superconductor Nd(O1-xFx)FeAs is mostly determined by the magnetic Nd ions.Comment: 4 pages, 4 figure

    Optical and magneto-optical properties of ferromagnetic full-Heusler films: experiments and first-principles calculations

    Full text link
    We report a joint theoretical and experimental study focused on understanding the optical and magneto-optical properties of Co-based full-Heusler compounds. We show that magneto-optical spectra calculated within ab-initio density functional theory are able to uniquely identify the features of the experimental spectra in terms of spin resolved electronic transitions. As expected for 3d-based magnets, we find that the largest Kerr rotation for these alloys is of the order of 0.3o in polar geometry. In addition, we demonstrate that (i) multilayered structures have to be carefully handled in the theoretical calculations in order to improve the agreement with experiments, and (ii) combined theoretical and experimental investigations constitute a powerful approach to designing new materials for magneto-optical and spin-related applicationsComment: 20 pages, including 6 figures and 1 table. 40 refs. To be published in Phys. Rev.
    corecore