14,714 research outputs found
Effects of motion on jet exhaust noise from aircraft
The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles
X-ray absorption branching ratio in actinides: LDA+DMFT approach
To investigate the x-ray absorption (XAS) branching ratio from the core 4d to
valence 5f states, we set up a theoretical framework by using a combination of
density functional theory in the local density approximation and Dynamical Mean
Field Theory (LDA+DMFT), and apply it to several actinides. The results of the
LDA+DMFT reduces to the band limit for itinerant systems and to the atomic
limit for localized f electrons, meaning a spectrum of 5f itinerancy can be
investigated. Our results provides a consistent and unified view of the XAS
branching ratio for all elemental actinides, and is in good overall agreement
with experiments.Comment: 6 pages, 4 figure
Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5
In Cerium-based heavy electron materials, the 4f electron's magnetic moments
bind to the itinerant quasiparticles to form composite heavy quasiparticles at
low temperature. The volume of the Fermi surfacein the Brillouin zone
incorporates the moments to produce a "large FS" due to the Luttinger theorem.
When the 4f electrons are localized free moments, a "small FS" is induced since
it contains only broad bands of conduction spd electrons. We have addressed
theoretically the evolution of the heavy fermion FS as a function of
temperature, using a first principles dynamical mean-field theory (DMFT)
approach combined with density functional theory (DFT+DMFT). We focus on the
archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum
critical point. Upon cooling, both the quantum oscillation frequencies and
cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different
characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity
coherence peak observed at T ~ 50 K is the result of the competition between
the binding of incoherent 4f electrons to the spd conduction electrons at Fermi
level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page
Supplementary information, 2 figures for the Supplementary information.
Supplementary movie 1 and 2 are provided on the
webpage(http://www-ph.postech.ac.kr/~win/supple.html
Dynamical Mean-Field Theory within the Full-Potential Methods: Electronic structure of Ce-115 materials
We implemented the charge self-consistent combination of Density Functional
Theory and Dynamical Mean Field Theory (DMFT) in two full-potential methods,
the Augmented Plane Wave and the Linear Muffin-Tin Orbital methods. We
categorize the commonly used projection methods in terms of the causality of
the resulting DMFT equations and the amount of partial spectral weight
retained. The detailed flow of the Dynamical Mean Field algorithm is described,
including the computation of response functions such as transport coefficients.
We discuss the implementation of the impurity solvers based on hybridization
expansion and an analytic continuation method for self-energy. We also derive
the formalism for the bold continuous time quantum Monte Carlo method. We test
our method on a classic problem in strongly correlated physics, the
isostructural transition in Ce metal. We apply our method to the class of heavy
fermion materials CeIrIn_5, CeCoIn_5 and CeRhIn_5 and show that the Ce 4f
electrons are more localized in CeRhIn_5 than in the other two, a result
corroborated by experiment. We show that CeIrIn_5 is the most itinerant and has
a very anisotropic hybridization, pointing mostly towards the out-of-plane In
atoms. In CeRhIn_5 we stabilized the antiferromagnetic DMFT solution below 3K,
in close agreement with the experimental N\'eel temperature.Comment: The implementation of Bold-CTQMC added and some test of the method
adde
Multiplet ligand-field theory using Wannier orbitals
We demonstrate how ab initio cluster calculations including the full Coulomb
vertex can be done in the basis of the localized, generalized Wannier orbitals
which describe the low-energy density functional (LDA) band structure of the
infinite crystal, e.g. the transition metal 3d and oxygen 2p orbitals. The
spatial extend of our 3d Wannier orbitals (orthonormalized Nth order muffin-tin
orbitals) is close to that found for atomic Hartree-Fock orbitals. We define
Ligand orbitals as those linear combinations of the O 2p Wannier orbitals which
couple to the 3d orbitals for the chosen cluster. The use of ligand orbitals
allows for a minimal Hilbert space in multiplet ligand-field theory
calculations, thus reducing the computational costs substantially. The result
is a fast and simple ab initio theory, which can provide useful information
about local properties of correlated insulators. We compare results for NiO,
MnO and SrTiO3 with x-ray absorption, inelastic x-ray scattering, and
photoemission experiments. The multiplet ligand field theory parameters found
by our ab initio method agree within ~10% to known experimental values
Temperature dependent Eu 3d-4f X-ray Absorption and Resonant Photoemission Study of the Valence Transition in
We study the mixed valence transition ( 80 K) in
EuNi(SiGe) using Eu 3 X-ray absorption
spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The
Eu and Eu main peaks show a giant resonance and the spectral
features match very well with atomic multiplet calculations. The spectra show
dramatic temperature ()-dependent changes over large energies (10 eV)
in RESPES and XAS. The observed non-integral mean valencies of 2.35
0.03 ( = 120 K) and 2.70 0.03 ( = 40 K) indicate homogeneous
mixed valence above and below . The redistribution between
Eu+ and Eu+ states is attributed to
a hybridization change coupled to a Kondo-like volume collapse.Comment: 4 pages, 3 figure
Nucleosynthesis in the Early Galaxy
Recent observations of r-process-enriched metal-poor star abundances reveal a
non-uniform abundance pattern for elements . Based on non-correlation
trends between elemental abundances as a function of Eu-richness in a large
sample of metal-poor stars, it is shown that the mixing of a consistent and
robust light element primary process (LEPP) and the r-process pattern found in
r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we
derive the abundance pattern of the LEPP from observation and show that it is
consistent with a missing component in the solar abundances when using a recent
s-process model. As the astrophysical site of the LEPP is not known, we explore
the possibility of a neutron capture process within a site-independent
approach. It is suggested that scenarios with neutron densities
or in the range best
explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical
Journa
- …