898 research outputs found

    Endocytosis in filter-grown Madin-Darby canine kidney cells

    Get PDF
    The nitrogen-containing bisphosphonates used for management of the patients with osteoporosis were reported to influence the function of renal tubular cells. However, how nitrogen-containing bisphosphates exert any effects on ion currents remains controversial. The effects of ibandronate (Iban), a nitrogen-containing bisphosphonate, on ionic channels, including two types of Ca(2+)-activated K(+) (KCa) channels, namely, large-conductance KCa (BKCa) and intermediate-conductance KCa (IKCa) channels, were investigated in Madin-Darby canine kidney (MDCK) cells. In whole-cell current recordings, Iban suppressed the amplitude of voltage-gated K(+) current elicited by long ramp pulse. Addition of Iban caused a reduction of BKCa channels accompanied by a right shift in the activation curve of BKCa channels, despite no change in single-channel conductance. Ca(2+) sensitivity of these channels was modified in the presence of this compound; however, the magnitude of Iban-mediated decrease in BKCa-channel activity under membrane stretch with different negative pressure remained unchanged. Iban suppressed the probability of BKCa-channel openings linked primarily to a shortening in the slow component of mean open time in these channels. The dissociation constant needed for Iban-mediated suppression of mean open time in MDCK cells was 12.2\ua0μM. Additionally, cell exposure to Iban suppressed the activity of IKCa channels, and DC-EBIO or 9-phenanthrol effectively reversed its suppression. Under current-clamp configuration, Iban depolarized the cells and DC-EBIO or PF573228 reversed its depolarizing effect. Taken together, the inhibitory action of Iban on KCa-channel activity may contribute to the underlying mechanism of pharmacological or toxicological actions of Iban and its structurally similar bisphosphonates on renal tubular cells occurring in vivo

    Capitulation and transfer kernels

    Get PDF

    New High Field State of Flux Line Lattice in Unconventional Superconductor CeCoIn_5

    Full text link
    Ultrasound velocity measurements of the unconventional superconductor CeCoIn_5 with extremely large Pauli paramagnetic susceptibility reveal an unusual structural transformation of the flux line lattice (FLL) in the vicinity of the upper critical field. The transition field coincides with that at which heat capacity measurements reveal a second order phase transition. The lowering of the sound velocity at the transition is consistent with the collapse of the FLL tilt modulus and a crossover to quasi two-dimensional FLL pinning. These results provide a strong evidence that the high field state is the Fulde-Ferrel-Larkin-Ovchinikov phase, in which the order parameter is spatially modulated and has planar nodes aligned perpendicular to the vortices.Comment: 5 pages, 4 figure

    Structure of the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional superconductors

    Full text link
    Nonuniform superconducting state due to strong spin magnetism is studied in two-dimensional type-II superconductors near the second order phase transition line between the normal and the superconducting states. The optimum spatial structure of the orderparameter is examined in systems with cylindrical symmetric Fermi surfaces. It is found that states with two-dimensional structures have lower free energies than the traditional one-dimensional solutions, at low temperatures and high magnetic fields. For s-wave pairing, triangular, square, hexagonal states are favored depending on the temperature, while square states are favored at low temperatures for d-wave pairing. In these states, orderparameters have two-dimensional structures such as square and triangular lattices.Comment: 11 pages (LaTeX, revtex.sty), 3 figures; added reference

    Temperature dependence of the upper critical field of an anisotropic singlet superconductivity in a square lattice tight-binding model in parallel magnetic fields

    Full text link
    Upper critical field parallel to the conducting layer is studied in anisotropic type-II superconductors on square lattices. We assume enough separation of the adjacent layers, for which the orbital pair-breaking effect is suppressed for exactly aligned parallel magnetic field. In particular, we examine the temperature dependence of the critical field H_c(T) of the superconductivity including the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) state, in which the Cooper pairs have non-zero center-of-mass momentum q. In the system with the cylindrically symmetric Fermi-surface, it is known that H_c(T) of the d-wave FFLO state exhibits a kink at a low temperature due to a change of the direction of q in contrast to observations in organic superconductors. It is shown that the kink disappears when the Fermi-surface is anisotropic to some extent, since the direction of q is locked in an optimum direction independent of the temperature.Comment: 5 pages, 5 figures, revtex.sty, submitted to J.Phys.Soc.Jp

    Evidence of Andreev bound states as a hallmark of the FFLO phase in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2

    Full text link
    Superconductivity is a quantum phenomena arising, in its simplest form, from pairing of fermions with opposite spin into a state with zero net momentum. Whether superconductivity can occur in fermionic systems with unequal number of two species distinguished by spin, atomic hyperfine states, flavor, presents an important open question in condensed matter, cold atoms, and quantum chromodynamics, physics. In the former case the imbalance between spin-up and spin-down electrons forming the Cooper pairs is indyced by the magnetic field. Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed that such imbalanced system can lead to exotic superconductivity in which pairs acquire finite momentum. The finite pair momentum leads to spatially inhomogeneous state consisting of of a periodic alternation of "normal" and "superconducting" regions. Here, we report nuclear magnetic resonance (NMR) measurements providing microscopic evidence for the existence of this new superconducting state through the observation of spin-polarized quasiparticles forming so-called Andreev bound states.Comment: 6 pages, 5 fig

    Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking

    Get PDF
    Background Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. Methodology/Principal Findings Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2–3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. Conclusions/Significance These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation
    corecore