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Capitulation and Transfer Kernels

par K. W. GRUENBERG et A. WEISS

RÉSUMÉ. On sait que pour une extension galoisienne finie K/k
d’un corps de nombres, le noyau du morphisme d’extension Clk ~
ClK s’identifie au noyau X (H) du transfert H/H’ ~ A, où H =
Gal(K/k), A = Gal(K/K) et K est le corps de classes de Hilbert
de K. Lorsque le groupe G = Gal(K/k) est abélien, H. Suzuki a
montré que |G| divise |X(H)|.

Nous appelons noyau de transfert pour G tout groupe abélien
fini X qui s’écrit X(H) pour un certain groupe H tel que A ~
H ~ G. Après avoir caractérisé les noyaux de transfert en termes
de représentations entières de G, nous montrons que X est un
noyau de transfert pour le groupe abélien G si et seulement si
on a |G| X = 0 et |G| divise |X|, ce qui fournit une nouvelle
démonstration du résultat de Suzuki.

ABSTRACT. If K/k is a finite Galois extension of number fields
with Galois group G, then the kernel of the capitulation map
Clk ~ ClK of ideal class groups is isomorphic to the kernel X(H)
of the transfer map H/H’ ~ A, where H = Gal(K/k), A =
Gal(K/K) and K is the Hilbert class field of K. H. Suzuki proved
that when G is abelian, |G| divides |X(H)|. We call a finite
abelian group X a transfer kernel for G if X ~ X(H) for some
group extension A ~ H ~ G.

After characterizing transfer kernels in terms of integral rep-
resentations of G, we show that X is a transfer kernel for the
abelian group G if and only if |G|X = 0 and |G| divides |X|. Our
arguments give a new proof of Suzuki’s result.

Let K/k be a finite unramified Galois extension of number fields with
Galois group G. The capitulation kernel for is the kernel of the nat-
ural homomorphism of ideal class groups Clk e CIK. Suzuki [S] proved
that when G is abelian, its order G~ divides the order of the capitulation
kernel. This remarkable result encapsulates much of the information pre-
viously available about capitulation. We refer to the surveys [J] and [M]
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for relevant background. Our aim here is to explain a new approach to
Suzuki’s theorem.
The transition to group theory (reviewed in § 1) allows one to interpret

capitulation kernels as transfer kernels, by which we mean the following:
given a finite group G, then a finite abelian group X is a transfer kernel for
G if there exists a group extension A - H ~ G with A finite abelian so that
X is isomorphic to the kernel of the transfer homomorphism H] -4 A.
We shall prove the following result.

Theorem 1. If G is a finite abelian group, then the finite additive group
X is a transfer kernel for G if, and only if, = 0 and I G I divides 

We outline what follows. In §1 we translate the problem into an equiv-
alent one on G-module extensions over AG, the augmentation ideal of the
integral group ring ZG. Then §2, the core of the paper, is an analysis of the
common structural properties of transfer kernels for G. This makes possi-
ble the proof of Theorem 1 in §3. In our final §4 we collect some comments
and questions.

1. TRANSLATIONS

We begin with the classical result of E. Artin.

Proposition 1. The capitulation kernel for Klk is a transfer kernel for
G.

Here is a sketch of the proof. Let K be the Hilbert class field of K and
A = Gal( K / K). If H = Gal(K/k) then there is a commutative square

from which the proposition follows by taking kernels.

Proposition 2. The finite additive group X is a transfer kernel for G if,
and only if, there exists a G-module extension A ~ B --~ AG with A finite
and X - H-1(G, B).
Proof. This result is clear from the functorial relationship between group
extensions over G and G-module extensions over OG (cf. [G] §10.5). As
this is not the usual approach in the literature we sketch it here.
A group extension
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yields the G-module extension

where B = T is induced from 7r: AH --t A(3 and j(a) is the
appropriate coset of i(a) - 1.

Conversely, given (2), let

Then H is a group with multiplication x.y - T(x)y + x + y, its identity
element is 0 and the inverse of x is x-1 = -g-lx, where T(x) - g - 1.
The module homomorphism T gives the group homomorphism H -+ G via
z e r(x) + 1 with kernel A.

If B arises from the group extension (1), then the hidden group H in B
gives an extension equivalent to H:

where u(h) = (h - 1) + AA.AH. The G-coinvariants on B, namely BG =
B/(dG)B, are naturally isomorphic to AH/(AH)2, whence to H/(H, H~
and so to !Il Notice that H/~H, H~ ~ BG is just ~(H, H~ H x +
(AG)B.
We claim there is a commutative square

where G is the norm endomorphism and the lower isomorphism is
induced by j . 

-

In view of (3) we may replace H by H and view j as inclusion. Take a
transversal G, for A in H. If x E H with T(x) = J~ - 1, then the
image of x under transfer is 11~ which is the same as 1:g 
because each factor is in A. Now
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and so the transfer image is Gx as required.
Proposition 2 follows by taking kernels. D

2. TRANSFER KERNELS

Let G be a finite group, not necessarily abelian. Put A = ZG/(G) and
identify AG with If M is a ZG-module, then dG(M) denotes the
minimum number of module generators of M.

Theorem 2. The following are equivalent:
(a) X is a transfer kernel for G;
(b) X is isomorphic to the cokernel of a homomorphism cp : Am

where m &#x3E; dG(AG) and U is a finitely generated G-submodule of
Q

(c) X is isomorphic to MG for sorrce finitely generated G-module M,
where GM = 0 and QM contains a QG-copy of QA;

(d) IGIX = 0 and there exists a surjective homomorphism X - MG with
M as in (c).

Proof. (a) ~ (b). Using Proposition 2 we may, and shall, assume X ri
H-1 (G, B), where A - B - AG. Take a free resolution of B, so deter-
mining m and S in the following diagram:

Now H-1(G, B) = (we use Tate cohomology throughout) and
the exact sequence SG --+ S -4* U gives

where J is the connecting homomorphism. Since A is finite, QS = QR ri
whence SG - and Note that U is Z-torsion-

free and so U is contained in QU. Also GU = 0 gives H-1 (G, U) = UG and
H~(G, U) = 0. Thus UG 6 )Am --* X is exact.

(b) ~ (c). The exact sequence A - AG of G-modules stays
exact when we apply Hom(U, -) because U is Z-free. So we obtain the
exact sequence

where the right hand term is 0 because it is isomorphic to

which is 0 because HomG(U,7G) = 0 as UG is finite.
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It follows that the given homomorphism cp : UG --~ AG lifts to a G-
homomorphism Q : U e A"’t with QG giving the commutative diagram

- 

with M = Coker,B. This induces an epimorphism M - X and hence,
by taking G-coinvariants, an isomorphism X. Finally, QM (1) QU
contains (a G-copy of) QA"~ , whence QM contains QA.

(c) ~ (d) is clear since IGI I annihilates MG = H-1 (G, M).
(d) ~ (b) . Choose m &#x3E; dG (AG), d(X ) ~ and take a G-free

presentation L -4 M of M., Since GM =0, LG = 

thereby giving the exact sequence where U = L/LG, and
hence the exact sequence UG Am--* MG. Choose a : AJ-X and letG G

{3: X - MG be the given homomorphism. Thus Coker iG ^_r Imoa,
which implies, by the Lemma below, that ImiG - Ker,8a. Consequently
Kera is isomorphic to a subgroup D of ImiG. There exists a map of UG
onto D (remember we are dealing with finite abelian groups), giving the
composite p : UG -~ D " Am, with Kera. Again using the
Lemma below, Cokerp ri X and so UG Am -X is exact. Finally,
QU e QM ~ QA" shows that QA implies QU C 

Lemma. (i) Given epimorpltisms fi , f 2 : Az - X , then Ker f 2 .
(ii) Given epimorphisms gi : Xi , i = l, 2, with Kergl ^-r Kerg2,

then X2.

Proof. In (i) the homomorphisms f1, f2 are free presentations of X as
So Schanuel’s Lemma and the Krull-Schmidt property

give the result. For (ii), dualise with respect to Q/Z and obtain XZ
by (i).

(b) ~ (a). Our aim is to prove that the X of (b) is a transfer kernel in
the module-theoretic sense of Proposition 2.
We use the isomorphism

given by integral duality: ~ ~ (x H ~.x). Hence p corresponds to a
uniquely determined extension 7~’"~ ~--&#x3E; S -H U whose associated connecting
homomorphism H-1(G, U) e is cp (e.g. 11.1 in [GW]). Thus
UG ~ H°(G, S) is exact and so X - H°(G, S).

Take a free presentation R " ZGm --* AG of AG and embed S in R
with cokernel A. This can be done because
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Taking the pushout along R - A gives a diagram exactly like (4) except
that A might not be finite. In any case H-1(G, B).

It remains to find a submodule L of A so that A/L is finite and H-1 (G, B)
= H-1(G, B/L). First note that = 0 by the middle column of (4)
and QSG -- Hence BG is finite and so A/A n AG.B is finite. Pick
a torsion-free G-submodule L of finite index in A n Then A/L is
finite; also GL = 0, whence LG = 0. The exact sequence L Y B - B/L
then gives the exact sequence

which finishes the proof. 0

3. PROOF OF THEOREM 1

To prove Theorem 1 it suffices, in view of Proposition 2 and Theorem 2,
to establish the equivalence of
(i) X is a finite additive group such that IGIX = 0 and IGI divides 
with

(ii) X is isomorphic to MG for some finitely generated G-module M, where
GM = 0 and QM contains a QG-copy of QA.

(i) # (ii). By (d) of Theorem 2 it suffices to prove X has a transfer
kernel for G as a homomorphic image. We shall show that any image of X
of order ~G~ is a transfer kernel. Change notation and call this image X.
So we have and shall use induction on when X = 0, then
G = 1 and so we can take M = 0.
Now let X = Xl Since ~X~, so G has an image G = GIG,

of order p’ and then IG11 = By induction, for an

appropriate Ml. Define M = A, where A = ZG/(G) is a
G-module by inflation. Then OM = 0 since G1M1 = 0, whence

(ii) ~ (i). We repeat the classical argument. Take a free ZG-presentation
F - M of M, with F = Since MG is finite, the kernel of FG - MG
is isomorphic to FG and so MG is the cokernel of an endomorphism f of
FG. It follows that det f = 

Since F -~ FG maps Ker(F e M) onto the image of f , there is a

ZG-endomorphism f of F such that fc = f and Coker f maps onto M.
Now det f annihilates Cokerj (recall that ZG is a commutative ring). So
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(det /)M = 0 implies det / = nG for a suitable integer n (since QA 9
QM) .

Finally, with e denoting the augmentation on ZG, e det f = det f and
thus nlGI = E(nd) = 

4. REMARKS

(1) Is the converse of Proposition 1 true? This is a fundamental problem.
An even stronger form of this is the following: given a group extension A --t
H e G with A abelian, does there exist an unramified Galois extension L
with Galois group H so that L is the Hilbert class field K of the fixed field
K of A?

It should be noticed that any group H can be realised as the Galois
group of an unramified extension L/k ([L], p. 121). Then L C K and the
difficulty lies in ensuring that L = K.

(2) Suppose X is a finite additive group such that IGIX = 0. Then

(a) if X is a transfer kernel for G, IG/[G, G]I I divides I X 1; ;
(b) if ~G~ divides IXI, then X is a transfer kernel for G.
Both these facts are variations of §3; for (b) one must first show that if,

for each prime p, the p-primary part of X is a transfer kernel for a Sylow
p-subgroup of G, then X is one for G.

However, neither (a) nor (b) has a converse if G is a non-abelian p-group.
This is obvious for (b) (take A = 1). For (a), if X is Z-cyclic and of order

, then X cannot be a transfer kernel for G: for if X - MG with
M as in (c) of Theorem 2, then lifting a generator of MG to M gives a
G-homomorphism A - M which becomes an isomorphism on coinvariants
(by Nakayama’s Lemma and QA); then IXI = IGI forcing G to be
abelian.
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