1,482 research outputs found

    Annotating Medical Image Data

    Full text link

    Elastic Behavior of a Two-dimensional Crystal near Melting

    Full text link
    Using positional data from video-microscopy we determine the elastic moduli of two-dimensional colloidal crystals as a function of temperature. The moduli are extracted from the wave-vector-dependent normal mode spring constants in the limit q→0q\to 0 and are compared to the renormalized Young's modulus of the KTHNY theory. An essential element of this theory is the universal prediction that Young's modulus must approach 16π16 \pi at the melting temperature. This is indeed observed in our experiment.Comment: 4 pages, 3 figure

    Polarization sensitive optical frequency domain imaging system for endobronchial imaging

    Get PDF
    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2Ă—2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens

    Harmonic lattice behavior of two-dimensional colloidal crystals

    Full text link
    Using positional data from video-microscopy and applying the equipartition theorem for harmonic Hamiltonians, we determine the wave-vector-dependent normal mode spring constants of a two-dimensional colloidal model crystal and compare the measured band-structure to predictions of the harmonic lattice theory. We find good agreement for both the transversal and the longitudinal mode. For q→0q\to 0, the measured spring constants are consistent with the elastic moduli of the crystal.Comment: 4 pages, 3 figures, submitte

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    High speed miniature motorized endoscopic probe for optical frequency domain imaging

    Get PDF
    We present a miniature motorized endoscopic probe for Optical Coherence Tomography with an outer diameter of 1.65 mm and a rotation speed of 3,000-12,500 rpm. This is the smallest motorized high speed OCT probe to our knowledge. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm to acquire images from ex vivo pig lung tissue through the working channel of a human bronchoscope. © 2012 Optical Society of America

    Spin-dependent electrical transport in ion-beam sputter deposited Fe-Cr multilayers

    Full text link
    The temperature dependence of the electrical resistivity and magnetoresistance of Xe-ion beam sputtered Fe-Cr multilayers has been investigated. The electrical resistivity between 5 and 300 K in the fully ferromagnetic state, obtained by applying a field beyond the saturation field (H_sat) necessary for the antiferromagnetic(AF)-ferromagnetic(FM) field-induced transition, shows evidence of spin-disorder resistivity as in crystalline Fe and an s-d scattering contribution (as in 3d metals and alloys). The sublattice magnetization m(T) in these multilayers has been calculated in terms of the planar and interlayer exchange energies. The additional spin-dependent scattering \Delta \rho (T) = \rho(T,H=0)_AF - \rho(T,H=H_sat)_FM in the AF state over a wide range of temperature is found to be proportional to the sublattice magnetization, both \Delta \rho(T) and m(T) reducing along with the antiferromagnetic fraction. At intermediate fields, the spin-dependent part of the electrical resistivity (\rho_s (T)) fits well to the power law \rho_s (T) = b - cT^\alpha where c is a constant and b and \alpha are functions of H. At low fields \alpha \approx 2 and the intercept b decreases with H much the same way as the decrease of \Delta \rho (T) with T. A phase diagram (T vs. H_sat) is obtained for the field- induced AF to FM transition. Comparisons are made between the present investigation and similar studies using dc magnetron sputtered and molecular beam epitaxy (MBE) grown Fe-Cr multilayers.Comment: 8 pages, 10 figures, to appear in Phys. Rev.

    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction across a tunneling junction out of equilibrium

    Full text link
    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic ss-dd spin impurities across a tunneling junction is studied when the system is driven out of equilibrium through biasing the junction. The nonequilibrium situation is handled with the Keldysh time-loop perturbation formalism in conjunction with appropriate coupling methods for tunneling systems due to Caroli and Feuchtwang. We find that the presence of a nonequilibrium bias across the junction leads to an interference of several fundamental oscillations, such that in this tunneling geometry, it is possible to tune the interaction between ferromagnetic and antiferromagnetic coupling at a fixed impurity configuration, simply by changing the bias across the junction. Furthermore, it is shown that the range of the RKKY interaction is altered out of equilibrium, such that in particular the interaction energy between two slabs of spins scales extensively with the thickness of the slabs in the presence of an applied bias.Comment: 38 pages revtex preprint; 5 postscript figures; submitted to Phys. Rev.

    Platelet- derived growth factor receptor-beta and epidermal growth factor receptor in pulmonary vasculature of systemic sclerosis-associated pulmonary arterial hypertension versus idiopathic pulmonary arterial hypertension and pulmonary veno-occlusive disease: a case-control study

    Get PDF
    INTRODUCTION: Systemic sclerosis (SSc) complicated by pulmonary arterial hypertension (PAH) carries a poor prognosis, despite pulmonary vascular dilating therapy. Platelet-derived growth factor receptor-beta (PDGFR-beta) and epidermal growth factor receptor (EGFR) are potential therapeutic targets for PAH because of their proliferative effects on vessel remodelling. To explore their role in SScPAH, we compared PDGFR- and EGFR-mmunoreactivity in lung tissue specimens from SScPAH. We compared staining patterns with idiopathic PAH (IPAH) and pulmonary veno-occlusive disease (PVOD), as SScPAH vasculopathy differs from IPAH and sometimes displays features of PVOD. Immunoreactivity patterns of phosphorylated PDGFR-beta (pPDGFR-beta) and the ligand PDGF-B were evaluated to provide more insight into the patterns of PDGFR-b activation. METHODS: Lung tissue specimens from five SScPAH, nine IPAH, six PVOD patients and five controls were examined. Immunoreactivity was scored for presence, distribution and intensity. RESULTS: All SScPAH and three of nine IPAH cases (P = 0.03) showed PDGFR-beta-immunoreactivity in small vessels (arterioles/venules); of five SScPAH vs. two of nine IPAH cases (P = 0.02) showed venous immunoreactivity. In small vessels, intensity was stronger in SScPAH vs. IPAH. No differences were found between SScPAH and PVOD. One of five normal controls demonstrated focally mild immunoreactivity. There were no differences in PDGF-ligand and pPDGFR-b-immunoreactivity between patient groups; however, pPDGFR-b-immunoreactivity tended to be more prevalent in SScPAH small vasculature compared to IPAH. Vascular EGFR-immunoreactivity was limited to arterial and arteriolar walls, without differences between groups. No immunoreactivity was observed in vasculature of normals. CONCLUSIONS: PDGFR-beta-immunoreactivity in SScPAH is more common and intense in small- and post-capillary vessels than in IPAH and does not differ from PVOD, fitting in with histomorphological distribution of vasculopathy. PDGFR-beta immunoreactivity pattern is not paralleled by pPDGFR-beta or PDGF-B patterns. PDGFR-beta- and EGFR-immunoreactivity of pulmonary vessels distinguishes PAH patients from controls
    • …
    corecore