569 research outputs found

    Improved modelling of liquid GeSe2_2: the impact of the exchange-correlation functional

    Full text link
    The structural properties of liquid GeSe2_2 are studied by using first-principles molecular dynamics in conjuncton with the Becke, Lee, Yang and Parr (BLYP) generalized gradient approximation for the exchange and correlation energy. The results on partial pair correlation functions, coordination numbers, bond angle distributions and partial structure factors are compared with available experimental data and with previous first-principle molecular dynamics results obtained within the Perdew and Wang (PW) generalized gradient approximation for the exchange and correlation energy. We found that the BLYP approach substantially improves upon the PW one in the case of the short-range properties. In particular, the Ge−-Ge pair correlation function takes a more structured profile that includes a marked first peak due to homopolar bonds, a first maximum exhibiting a clear shoulder and a deep minimum, all these features being absent in the previous PW results. Overall, the amount of tetrahedral order is significantly increased, in spite of a larger number of Ge−-Ge homopolar connections. Due to the smaller number of miscoordinations, diffusion coefficients obtained by the present BLYP calculation are smaller by at least one order of magnitude than in the PW case.Comment: 6 figure

    The changing trends of childhood poisoning at a tertiary children’s hospital in South Africa

    Get PDF
    Context. Information on childhood poisoning in the developingworld, including South Africa, is scarce, despite its contribution tomorbidity and mortality.Objective. We describe the profile of children with exposuresand poisonings presenting to Red Cross War Memorial Children’sHospital (RCWMCH) in Cape Town, South Africa, from 2003 to2008 and compare the trends of causative agents over the past twodecades.Methods. Cases were identified by review of the RCWMCH caserecords.Results. Of the total incidents (N=2 872), paraffin (kerosene)was the commonest agent (n=692, 24%) with 124 poisoningsincluding two deaths. Drugs were the most common toxin group(n=988, 34%), including 139 single-drug poisonings with 5deaths; 4 associated with traditional medicine use. Householdcleaning product incidents (n=302, 10%) resulted in 29 singleproductpoisonings with no deaths. Pesticide incidents (n=311,10%) included 6 deaths; 203 (65%) incidents were due toorganophosphates or carbamates. The suburban distribution ofthe main toxin groups varied. Comparing 1987 and 2008, thenumber of incidents decreased from 1 116 to 447; drug and paraffinincidents decreased respectively (from 673 to 150 and from 332 to87), household cleaning products and cosmetics increased (21 to69) and pesticide incidents increased (7 to 69).Conclusion. Despite a decrease in the overall number of incidentsover two decades at RCWMCH, paraffin and drugs remainthe principal agents responsible for paediatric exposures andpoisonings, with increasing incidents due to household cleaningproducts and pesticides. Identification of these toxin groups comingfrom specific suburbs allows for targeted prevention initiatives

    Deformation and flow of a two-dimensional foam under continuous shear

    Full text link
    We investigate the flow properties of a two-dimensional aqueous foam submitted to a quasistatic shear in a Couette geometry. A strong localization of the flow (shear banding) at the edge of the moving wall is evidenced, characterized by an exponential decay of the average tangential velocity. Moreover, the analysis of the rapid velocity fluctuations reveals self-similar dynamical structures consisting of clusters of bubbles rolling as rigid bodies. To relate the instantaneous (elastic) and time-averaged (plastic) components of the strain, we develop a stochastic model where irreversible rearrangements are activated by local stress fluctuations originating from the rubbing of the wall. This model gives a complete description of our observations and is also consistent with data obtained on granular shear bands by other groups.Comment: 5 pages, 2 figure

    A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem

    Full text link
    We consider the overdamped limit of two-dimensional double well systems perturbed by weak noise. In the weak noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double well system are varied, a unique MPEP may bifurcate into two equally likely MPEP's. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. In this paper we quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our analysis relies on the development of a new scaling theory, which yields `critical exponents' describing weak-noise behavior near the saddle, at the bifurcation point.Comment: LaTeX, 60 pages, 24 Postscript figures. Uses epsf macros to include the figures. A file in `uufiles' format containing the figures is separately available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/figures.uu and a Postscript version of the whole paper (figures included) is available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/paperF.p

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Get PDF
    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel

    Stress-corrosion mechanisms in silicate glasses

    Full text link
    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.Comment: Invited review article - 34 pages Accepted for publication in J. Phys. D: Appl. Phy

    Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions

    Full text link
    The meaning of thermodynamic descriptions is found in large-deviations scaling of the fluctuations probabilities. The primary large-deviations rate function is the entropy, which is the basis for both fluctuation theorems and for characterizing the thermodynamic interactions of systems. Freidlin-Wentzell theory provides a general formulation of large-deviations scaling for non-equilibrium stochastic processes, through a representation in terms of a Hamiltonian dynamical system. A number of related methods now exist to construct the Freidlin-Wentzell Hamiltonian for many kinds of stochastic processes; one method due to Doi and Peliti, appropriate to integer counting statistics, is widely used in reaction-diffusion theory. Using these tools together with a path-entropy method due to Jaynes, we show how to construct entropy functions that both express large-deviations scaling of fluctuations, and describe system-environment interactions, for discrete stochastic processes either at or away from equilibrium. A collection of variational methods familiar within quantum field theory, but less commonly applied to the Doi-Peliti construction, is used to define a "stochastic effective action", which is the large-deviations rate function for arbitrary non-equilibrium paths. We show how common principles of entropy maximization, applied to different ensembles of states or of histories, lead to different entropy functions and different sets of thermodynamic state variables. Yet the relations of among all these levels of description may be constructed explicitly and understood in terms of information conditions. The example systems considered introduce methods that may be used to systematically construct descriptions with all the features familiar from equilibrium thermodynamics, for a much wider range of systems describable by stochastic processes
    • 

    corecore