7,365 research outputs found
Frequency and time profiles of metric wave isolated Type I solar noise storm bursts at high spectral and temporal resolution
Type I noise storms constitute a sizeable faction of the active-Sun radio
emission component. Observations of isolated instances of such bursts, in the
swept-frequency-mode at metric wavelengths, have remained sparse, with several
unfilled regions in the frequency coverage. Dynamic spectra of the burst
radiation, in the 30 - 130 MHz band, obtained from the recently commissioned
digital High Resolution Spectrograph (HRS) at the Gauribidanur Radio
Observatory, on account of the superior frequency and time resolution, have
unravelled in explicit detail the temporal and spectral profiles of isolated
bursts. Apart from presenting details on their fundamental emission features,
the time and frequency profile symmetry, with reference to custom-specific
Gaussian distributions, has been chosen as the nodal criterion to statistically
explain the state of the source regions in the vicinity of magnetic
reconnections, the latent excitation agent that contributes to plasma wave
energetics, and the quenching phenomenon that causes damping of the burst
emission.Comment: 9 pages 7 black and white / grey-scale figures (inclusive of 3
composite). MNRAS - accepte
The structure of dark matter halos in hierarchical clustering theories
During hierarchical clustering, smaller masses generally collapse earlier
than larger masses and so are denser on the average. The core of a small mass
halo could be dense enough to resist disruption and survive undigested, when it
is incorporated into a bigger object. We explore the possibility that a nested
sequence of undigested cores in the center of the halo, which have survived the
hierarchical, inhomogeneous collapse to form larger and larger objects,
determines the halo structure in the inner regions. For a flat universe with
, scaling arguments then suggest that the core density
profile is, with . But
whether such behaviour obtains depends on detailed dynamics. We first examine
the dynamics using a fluid approach to the self-similar collapse solutions for
the dark matter phase space density, including the effect of velocity
dispersions. We highlight the importance of tangential velocity dispersions to
obtain density profiles shallower than in the core regions. If
tangential velocity dispersions in the core are constrained to be less than the
radial dispersion, a cuspy core density profile shallower than 1/r cannot
obtain, in self-similar collapse. We then briefly look at the profiles of the
outer halos in low density cosmological models where the total halo mass is
convergent. Finally, we analyze a suite of dark halo density and velocity
dispersion profiles obtained in cosmological N-body simulations of models with
n= 0, -1 and -2. We find that the core-density profiles of dark halos, show
considerable scatter in their properties, but nevertheless do appear to reflect
a memory of the initial power spectrum, with steeper initial spectra producing
flatter core profiles. (Abridged)Comment: 31 pages, 7 figures, submitted to Ap
Cosmological Magnetic Fields from Primordial Helical Seeds
Most early Universe scenarios predict negligible magnetic fields on
cosmological scales if they are unprocessed during subsequent expansion of the
Universe. We present a new numerical treatment of the evolution of primordial
fields and apply it to weakly helical seeds as they occur in certain early
Universe scenarios. We find that initial helicities not much larger than the
baryon to photon number can lead to fields of about 10^{-13} Gauss with
coherence scales slightly below a kilo-parsec today.Comment: 4 revtex pages, 2 postscript figures include
Cosmic rays and Radio Halos in galaxy clusters : new constraints from radio observations
Clusters of galaxies are sites of acceleration of charged particles and
sources of non-thermal radiation. We report on new constraints on the
population of cosmic rays in the Intra Cluster Medium (ICM) obtained via radio
observations of a fairly large sample of massive, X-ray luminous, galaxy
clusters in the redshift interval 0.2--0.4. The bulk of the observed galaxy
clusters does not show any hint of Mpc scale synchrotron radio emission at the
cluster center (Radio Halo). We obtained solid upper limits to the diffuse
radio emission and discuss their implications for the models for the origin of
Radio Halos. Our measurements allow us to derive also a limit to the content of
cosmic ray protons in the ICM. Assuming spectral indices of these protons delta
=2.1-2.4 and microG level magnetic fields, as from Rotation Measures, these
limits are one order of magnitude deeper than present EGRET upper limits, while
they are less stringent for steeper spectra and lower magnetic fields.Comment: 14 pages, 5 figures, ApJ Letter, accepte
Gauge-invariant magnetic perturbations in perfect-fluid cosmologies
We develop further our extension of the Ellis-Bruni covariant and
gauge-invariant formalism to the general relativistic treatment of density
perturbations in the presence of cosmological magnetic fields. We present
detailed analysis of the kinematical and dynamical behaviour of perturbed
magnetized FRW cosmologies containing fluid with non-zero pressure. We study
the magnetohydrodynamical effects on the growth of density irregularities
during the radiation era. Solutions are found for the evolution of density
inhomogeneities on small and large scales in the presence of pressure, and some
new physical effects are identified.Comment: Revised version (some minor changes - few equations added). 26 pages.
No figures. To appear in Classical and Quantum Gravit
Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state, India
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems
Penetration depth of low-coherence enhanced backscattered light in sub-diffusion regime
The mechanisms of photon propagation in random media in the diffusive
multiple scattering regime have been previously studied using diffusion
approximation. However, similar understanding in the low-order (sub-diffusion)
scattering regime is not complete due to difficulties in tracking photons that
undergo very few scatterings events. Recent developments in low-coherence
enhanced backscattering (LEBS) overcome these difficulties and enable probing
photons that travel very short distances and undergo only a few scattering
events. In LEBS, enhanced backscattering is observed under illumination with
spatial coherence length L_sc less than the scattering mean free path l_s. In
order to understand the mechanisms of photon propagation in LEBS in the
subdiffusion regime, it is imperative to develop analytical and numerical
models that describe the statistical properties of photon trajectories. Here we
derive the probability distribution of penetration depth of LEBS photons and
report Monte Carlo numerical simulations to support our analytical results. Our
results demonstrate that, surprisingly, the transport of photons that undergo
low-order scattering events has only weak dependence on the optical properties
of the medium (l_s and anisotropy factor g) and strong dependence on the
spatial coherence length of illumination, L_sc, relative to those in the
diffusion regime. More importantly, these low order scattering photons
typically penetrate less than l_s into the medium due to low spatial coherence
length of illumination and their penetration depth is proportional to the
one-third power of the coherence volume (i.e. [l_s \pi L_sc^2 ]^1/3).Comment: 32 pages(including 7 figures), modified version to appear in Phys.
Rev.
- …