2,404 research outputs found

    Electronic transport properties through thiophenes on switchable domains

    Full text link
    The electronic transport of electrons and holes through stacks of α\alpha,\ome ga-dicyano-ÎČ\beta,ÎČ\beta'-dibutyl- quaterthiophene (DCNDBQT) as part of a nov el organic ferroic field-effect transistor (OFFET) is investigated. The novel ap plication of a ferroelectric instead of a dielectric substrate provides the poss ibility to switch bit-wise the ferroelectric domains and to employ the polarizat ion of these domains as a gate field in an organic semiconductor. A device conta ining very thin DCNDBQT films of around 20 nm thickness is intended to be suitab le for logical as well as optical applications. We investigate the device proper ties with the help of a phenomenological model called multilayer organic light-e mitting diodes (MOLED), which was extended to transverse fields. The results sho wed, that space charge and image charge effects play a crucial role in these org anic devices

    Initial Conditions and the Structure of the Singularity in Pre-Big-Bang Cosmology

    Get PDF
    We propose a picture, within the pre-big-bang approach, in which the universe emerges from a bath of plane gravitational and dilatonic waves. The waves interact gravitationally breaking the exact plane symmetry and lead generically to gravitational collapse resulting in a singularity with the Kasner-like structure. The analytic relations between the Kasner exponents and the initial data are explicitly evaluated and it is shown that pre-big-bang inflation may occur within a dense set of initial data. Finally, we argue that plane waves carry zero gravitational entropy and thus are, from a thermodynamical point of view, good candidates for the universe to emerge from.Comment: 18 pages, LaTeX, epsfig. 3 figures included. Minor changes; paragraph added in the introduction, references added and typos corrected. Final version published in Classical and Quantum Gravit

    The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field

    Full text link
    In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun. Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied the joint dynamics of a classical point particle and a wave type generalization of the Newtonian gravity potential, coupled in a regularized way. In the present paper the many-body dynamics of this model is studied. The Vlasov continuum limit is obtained in form equivalent to a weak law of large numbers. We also establish a central limit theorem for the fluctuations around this limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two inequalities in section 4, and definition of a Banach space in appendix A1. Presentation of LLN and CLT in section 4.3 improved. Notation improve

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page

    High temperature stability of natural maghemite: a magnetic and spectroscopic study

    Get PDF
    A combined magneto-mineralogical approach is used to diagnose maghemitization in magnetic grains of basaltic rock fragments from sand dunes in the Namibian desert in SW Africa. Data were obtained from static magnetic analysis, ferromagnetic resonance (FMR) spectroscopy, micro-Raman spectroscopy and electron microscopy. Micro-Raman spectroscopy showed that the magnetic grains in the lithic fragments form oxidative solid solution series with magnetite and maghemite as end-members. The five active Raman modes at 712, 665, 507, 380 and 344 cm−1 indicate that maghemite in the magnetic grains has well-defined structural properties. The FMR spectral analysis provides evidence for long-range dipolar coupling, which suggests intergrowth of the magnetic phases of the oxidative solid solution series. Thermomagnetic experiments and hysteresis measurements reveal a Curie temperature of about 890 K for this maghemite. Upon heating to 970 K part of the maghemite is altered to thermodynamically more stable hematite. After selective thermal decomposition of the maghemite in a protected atmosphere, the remaining magnetic phase has a Curie temperature of 850 K, characteristic for magnetite. The unique thermal stability of this natural maghemite above its Curie temperature is explained by the well-defined mineral structure, which formed during slow oxidative alteration of magnetite under arid climate condition

    The Geoff Egan Memorial Lecture 2011. Artefacts, art and artifice: reconsidering iconographic sources for archaeological objects in early modern Europe

    Get PDF
    A first systematic analysis of historic domestic material culture depicted in contemporaneous Western painting and prints, c.1400-1800. Drawing on an extensive data set, the paper proposes to methodologies and hermeneutics for historical analysis and archaeological correspondence

    Existence of axially symmetric static solutions of the Einstein-Vlasov system

    Full text link
    We prove the existence of static, asymptotically flat non-vacuum spacetimes with axial symmetry where the matter is modeled as a collisionless gas. The axially symmetric solutions of the resulting Einstein-Vlasov system are obtained via the implicit function theorem by perturbing off a suitable spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page

    Cosmology with positive and negative exponential potentials

    Get PDF
    We present a phase-plane analysis of cosmologies containing a scalar field ϕ\phi with an exponential potential V∝exp⁥(−λÎșϕ)V \propto \exp(-\lambda \kappa \phi) where Îș2=8πG\kappa^2 = 8\pi G and VV may be positive or negative. We show that power-law kinetic-potential scaling solutions only exist for sufficiently flat (λ26\lambda^26) negative potentials. The latter correspond to a class of ever-expanding cosmologies with negative potential. However we show that these expanding solutions with a negative potential are to unstable in the presence of ordinary matter, spatial curvature or anisotropic shear, and generic solutions always recollapse to a singularity. Power-law kinetic-potential scaling solutions are the late-time attractor in a collapsing universe for steep negative potentials (the ekpyrotic scenario) and stable against matter, curvature or shear perturbations. Otherwise kinetic-dominated solutions are the attractor during collapse (the pre big bang scenario) and are only marginally stable with respect to anisotropic shear.Comment: 8 pages, latex with revtex, 9 figure
    • 

    corecore