4,443 research outputs found
Key Feminist Concerns Regarding Core Labor Standards, Decent Work, and Corporate Social Responsibility
This document is part of a digital collection provided by the Martin P. Catherwood Library, ILR School, Cornell University, pertaining to the effects of globalization on the workplace worldwide. Special emphasis is placed on labor rights, working conditions, labor market changes, and union organizing.CCC_Key_Feminist_Concerns.pdf: 402 downloads, before Oct. 1, 2020
The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces
We prove the Makeenko-Migdal equation for two-dimensional Euclidean
Yang-Mills theory on an arbitrary compact surface, possibly with boundary. In
particular, we show that two of the proofs given by the first, third, and
fourth authors for the plane case extend essentially without change to compact
surfaces.Comment: Final version, minor typographical corrections. To appear in Comm.
Math. Phy
Atomic data from the Iron Project.XLIII. Transition probabilities for Fe V
An extensive set of dipole-allowed, intercombination, and forbidden
transition probabilities for Fe V is presented. The Breit-Pauli R-matrix (BPRM)
method is used to calculate 1.46 x 10^6 oscillator strengths for the allowed
and intercombination E1 transitions among 3,865 fine-structure levels dominated
by configuration complexes with n <= 10 and l <= 9. These data are complemented
by an atomic structure configuration interaction (CI) calculation using the
SUPERSTRUCTURE program for 362 relativistic quadrupole (E2) and magnetic dipole
(M1) transitions among 65 low-lying levels dominated by the 3d^4 and 3d^ 4s
configurations. Procedures have been developed for the identification of the
large number of fine-structure levels and transitions obtained through the BPRM
calculations. The target ion Fe VI is represented by an eigenfunction expansion
of 19 fine-structure levels of 3d^3 and a set of correlation configurations. Fe
V bound levels are obtained with angular and spin symmetries SL\pi and J\pi of
the (e + Fe VI) system such that 2S+1 = 5,3,1, L <= 10, J <= 8 of even and odd
parities. The completeness of the calculated dataset is verified in terms of
all possible bound levels belonging to relevant LS terms and transitions in
correspondence with the LS terms. The fine-structure averaged relativistic
values are compared with previous Opacity Project LS coupling data and other
works. The 362 forbidden transition probabilities considerably extend the
available data for the E2 and M1 transtions, and are in good agreement with
those computed by Garstang for the 3d^4 transitions.Comment: 19 pages, 1 figure. This paper marks the beginning of a large-scale
effort of ab initio atomic calculations that should eventually lead to
re-calculation of accurate iron opacities. Astron. Astrophys. Suppl. Ser. (in
press
Collective motion of self-propelled particles interacting without cohesion
We present a comprehensive study of Vicsek-style self-propelled particle
models in two and three space dimensions. The onset of collective motion in
such stochastic models with only local alignment interactions is studied in
detail and shown to be discontinuous (first-order like). The properties of the
ordered, collectively moving phase are investigated. In a large domain of
parameter space including the transition region, well-defined high-density and
high-order propagating solitary structures are shown to dominate the dynamics.
Far enough from the transition region, on the other hand, these objects are not
present. A statistically-homogeneous ordered phase is then observed, which is
characterized by anomalously-strong density fluctuations, superdiffusion, and
strong intermittency.Comment: Submitted to Physical Review
Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach
In a previous study published in Astrobiology, we focused on the evolution of
habitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun.
This study was based on a concept of planetary habitability in accordance to
the integrated system approach that describes the photosynthetic biomass
production taking into account a variety of climatological, biogeochemical, and
geodynamical processes. In the present study, we pursue a significant
augmentation of our previous work by considering stars with zero-age main
sequence masses between 0.5 and 2.0 M_sun with special emphasis on models of
0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider again
geodynamical processes during the main-sequence stage of these stars as well as
during their red giant branch evolution. Pertaining to the different types of
stars, we identify so-called photosynthesis-sustaining habitable zones (pHZ)
determined by the limits of biological productivity on the planetary surface.
We obtain various sets of solutions consistent with the principal possibility
of life. Considering that stars of relatively high masses depart from the
main-sequence much earlier than low-mass stars, it is found that the biospheric
life-span of super-Earth planets of stars with masses above approximately 1.5
M_sun is always limited by the increase in stellar luminosity. However, for
stars with masses below 0.9 M_sun, the life-span of super-Earths is solely
determined by the geodynamic time-scale. For central star masses between 0.9
and 1.5 M_sun, the possibility of life in the framework of our models depends
on the relative continental area of the super-Earth planet.Comment: 25 pages, 6 figures, 2 tables; submitted to: International Journal of
Astrobiolog
- …