25 research outputs found

    Localized itinerant electrons and unique magnetic properties of SrRu2O6

    Full text link
    SrRu2O6 has unique magnetic properties. It is characterized by a very high N\'eel temperature, despite its quasi-two-dimensional structure, and has a magnetic moment more than twice reduced compared to the formal ionic count. First principles calculations show that only an ideal Neel ordering in the Ru plane is possible, with no other metastable magnetic solutions, and, highly unusually, yield dielectric gaps for both antiferromagnetic and nonmagnetic states. We demonstrate that this strange behavior is the result of the formation of very specific electronic objects, recently suggested for a geometrically similar Na2IrO3 compound, whereby each electron is well localized on a particular Ru6 hexagon, and completely delocalized over the corresponding six Ru sites, thus making the compound bothboth strongly localized and highly itinerant

    Origin of the insulating state in honeycomb iridates and rhodates

    Full text link
    A burning question in the emerging field of spin-orbit driven insulating iridates, such as Na2IrO3 and Li2IrO3 is whether the observed insulating state should be classified as a Mott-Hubbard insulator derived from a half-filled relativistic j_eff=1/2 band or as a band insulator where the gap is assisted by spin-orbit interaction, or Coulomb correlations, or both. The difference between these two interpretations is that only for the former, strong spin-orbit coupling (lambda >~ W, where W is the band width) is essential. We have synthesized the isostructural and isoelectronic Li2RhO3 and report its electrical resistivity and magnetic susceptibility. Remarkably it shows insulating behavior together with fluctuating effective S=1/2 moments, similar to Na2IrO3 and Li2IrO3, although in Rh4+ (4d5) the spin-orbit coupling is greatly reduced. We show that this behavior has non-relativistic one-electron origin (although Coulomb correlations assist in opening the gap), and can be traced down to formation of quasi-molecular orbitals, similar to those in Na2IrO3.Comment: 7 pages, 7 figure

    Na2IrO3 as a molecular orbital crystal

    Full text link
    Contrary to previous studies that classify Na2IrO3 as a realization of the Heisenberg-Kitaev model with dominant spin-orbit coupling, we show that this system represents a highly unusual case in which the electronic structure is dominated by the formation of quasi-molecular orbitals (QMOs), with substantial quenching of the orbital moments. The QMOs consist of six atomic orbitals on an Ir hexagon, but each Ir atom belongs to three different QMOs. The concept of such QMOs in solids invokes very different physics compared to the models considered previously. Employing density functional theory calculations and model considerations we find that both the insulating behavior and the experimentally observed zigzag antiferromagnetism in Na2IrO3 naturally follow from the QMO model.Comment: Final version, accepted by PR

    Distinct magnetic regimes through site-selective atom substitution in the frustrated quantum antiferromagnet Cs2_2CuCl4x_{4-x}Brx_x

    Full text link
    We report on a systematic study of the magnetic properties on single crystals of the solid solution Cs2_2CuCl4x_{4-x}Brx_x (0 \leq x \leq 4), which include the two known end-member compounds Cs2_2CuCl4_4 and Cs2_2CuBr4_4, classified as quasi-two-dimensional quantum antiferromagnets with different degrees of magnetic frustration. By comparative measurements of the magnetic susceptibility χ\chi(TT) on as many as eighteen different Br concentrations, we found that the inplane and out-of-plane magnetic correlations, probed by the position and height of a maximum in the magnetic susceptibility, respectively, do not show a smooth variation with x. Instead three distinct concentration regimes can be identified, which are separated by critical concentrations xc1_{c1} = 1 and xc2_{c2} = 2. This unusual magnetic behavior can be explained by considering the structural peculiarities of the materials, especially the distorted Cu-halide tetrahedra, which support a site-selective replacement of Cl- by Br- ions. Consequently, the critical concentrations xc1_{c1} (xc2_{c2}) mark particularly interesting systems, where one (two) halidesublattice positions are fully occupied.Comment: 15 pages, 4 figure

    Fermionic response from fractionalization in an insulating two-dimensional magnet

    Get PDF
    Conventionally ordered magnets possess bosonic elementary excitations, called magnons. By contrast, no magnetic insulators in more than one dimension are known whose excitations are not bosons but fermions. Theoretically, some quantum spin liquids (QSLs) -- new topological phases which can occur when quantum fluctuations preclude an ordered state -- are known to exhibit Majorana fermions as quasiparticles arising from fractionalization of spins. Alas, despite much searching, their experimental observation remains elusive. Here, we show that fermionic excitations are remarkably directly evident in experimental Raman scattering data across a broad energy and temperature range in the two-dimensional material α\alpha-RuCl3_3. This shows the importance of magnetic materials as hosts of Majorana fermions. In turn, this first systematic evaluation of the dynamics of a QSL at finite temperature emphasizes the role of excited states for detecting such exotic properties associated with otherwise hard-to-identify topological QSLs.Comment: 5 pages, 3 figure
    corecore