184 research outputs found

    Inverse scattering approach to multiwavelength Fabry-Pérot laser design

    Get PDF
    A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to be related to a Moiré or superstructure grating

    Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    No full text
    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour ?-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases

    Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer

    Get PDF
    Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo

    GENE-CELL THERAPY OF HIV AND HEMATOLOGICAL MALIGNANCES BASED ON HEMATOPOIETIC STEM CELL TRANSPLANTATION AND SITE-SPECIFIC GENOME EDITING

    Get PDF
    Based on the annual UNAIDS reports the number of HIVinfected patients is continually growing since 1983. Antiretroviral Therapy (ART) allows to prolong life expectancy, but the problem of life quality and overall survival is still remaining. Nowadays, in the era of ART, one of the main cause of mortality in HIV-infected patients is malignancies. Lymphomas play one of the key roles in this group of diseases. The treatment of lymphomas includes combined regiments of chemotherapy with a curative potential. High dose chemotherapy with autologous hematopoietic stem cell transplant (auto-HSCT) is the main path of the treatment for relapsed / refractory lymphomas. In the last few years with a development of the genome editing technology auto-HSCT is becoming one of the most promising methods of HIV treatment. The case of “Berlin patient” when allogeneic HSCT from donor with mutation CCR5-delta32 lead to cure from HIV and proof of concept the efficacy of the gene therapy for HIV based on HSCT. Hematopoietic stem cell transplantation with edited autologous HSC (CCR5 knockout by site-specific genome editing tools with engineering nucleases) is a comprehensive treatment for this cohort of patients. On one hand, high dose chemotherapy with auto-HSCT cures the malignancy; on the other hand auto-HSCT works as a delivery method for the edited cells and creates an environment for the HIV eradication. This review is dedicated to HIV and oncology, methods of treatment of hematological malignancies and HIV-infection using genome editing technology based on HSCT

    OLED-on-silicon for near-to-eye microdisplays and sensing

    Get PDF
    Smart eyewear featuring near-to-eye (NTE) displays have evolved as major devices for wearable displays, which hold potential to become adopted by consumers soon. Tiny OLED-on-silicon microdisplays (<1” screen diagonal) are a key component of eyewear displays, creating images from active-matrix organic light emitting diodes (AM-OLED), similar to those that have become popular in mobile phone displays

    Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency

    Get PDF
    Flexible transparent electrode materials such as conducting polymers, silver nanowires, carbon nanotubes and graphenes are being investigated as possible replacements for conventional brittle inorganic electrodes. However, they have critical drawbacks of low work function (WF), resulting in a high hole injection barrier to an overlying semiconducting layer in simplified organic or organic-inorganic hybrid perovskite light-emitting diodes (OLEDs or PeLEDs). Here, we report a new anode material (AnoHIL) that has multifunction of both an anode and a hole injection layer (HIL) as a single layer. The AnoHIL has easy WF tunability up to 5.8 eV and thus makes ohmic contact without any HIL. We applied our anodes to simplified OLEDs, resulting in very high efficiency (62% ph el(-1) for single and 88% ph el(-1) for tandem). The AnoHIL showed a similar tendency in simplified PeLEDs, implying universal applicability to various optoelectronics. We also demonstrated large-area flexible lightings using our anodes. Our results provide a significant step toward the next generation of high-performance simplified indium tin oxide (ITO)-free light-emitting diodes.

    Cellular Barcoding Identifies Clonal Substitution as a Hallmark of Local Recurrence in a Surgical Model of Head and Neck Squamous Cell Carcinoma

    Get PDF
    Local recurrence after surgery for head and neck squamous cell carcinoma (HNSCC) remains a common event associated with a dismal prognosis. Improving this outcome requires a better understanding of cancer cell populations that expand from postsurgical minimal residual disease (MRD). Therefore, we assessed clonal dynamics in a surgical model of barcoded HNSCC growing in the submental region of immunodeficient mice. Clonal substitution and massive reduction of clonal heterogeneity emerged as hallmarks of local recurrence, as the clones dominating in less heterogeneous recurrences were scarce in their matched primary tumors. These lineages were selected by their ability to persist after surgery and competitively expand from MRD. Clones enriched in recurrences exhibited both private and shared genetic features and likely originated from ancestors shared with clones dominating in primary tumors. They demonstrated high invasiveness and epithelial-to-mesenchymal transition, eventually providing an attractive target for obtaining better local control for these tumors
    corecore