6,383 research outputs found

    Status of center dominance in various center gauges

    Get PDF
    We review arguments for center dominance in center gauges where vortex locations are correctly identified. We introduce an appealing interpretation of the maximal center gauge, discuss problems with Gribov copies, and a cure to the problems through the direct Laplacian center gauge. We study correlations between direct and indirect Laplacian center gauges.Comment: Presented by S. Olejnik at the NATO Advanced Research Workshop "Confinement, Topology, and other Non-Perturbative Aspects of QCD", Jan. 21-27, 2002, Stara Lesna, Slovakia. 10 pages, 3 figures (8 EPS files), uses crckapb.st

    Molecular Gas during the Post-Starburst Phase: Low Gas Fractions in Green Valley Seyfert Post-Starburst Galaxies

    Full text link
    Post-starbursts (PSBs) are candidate for rapidly transitioning from star-bursting to quiescent galaxies. We study the molecular gas evolution of PSBs at z ~ 0.03 - 0.2. We undertook new CO (2-1) observations of 22 Seyfert PSBs candidates using the ARO Submillimeter Telescope. This sample complements previous samples of PSBs by including green valley PSBs with Seyfert-like emission, allowing us to analyze for the first time the molecular gas properties of 116 PSBs with a variety of AGN properties. The distribution of molecular gas to stellar mass fractions in PSBs is significantly different than normal star-forming galaxies in the COLD GASS survey. The combined samples of PSBs with Seyfert-like emission line ratios have a gas fraction distribution which is even more significantly different and is broader (~ 0.03-0.3). Most of them have lower gas fractions than normal star-forming galaxies. We find a highly significant correlation between the WISE 12 micron to 4.6 micron flux ratios and molecular gas fractions in both PSBs and normal galaxies. We detect molecular gas in 27% of our Seyfert PSBs. Taking into account the upper limits, the mean and the dispersion of the distribution of the gas fraction in our Seyfert PSB sample are much smaller (mean = 0.025, std dev. = 0.018) than previous samples of Seyfert PSBs or PSBs in general (mean ~ 0.1 - 0.2, std dev. ~ 0.1 - 0.2).Comment: 17 pages, 12 figures accepted in MNRA

    Remarks on the Gribov Problem in Direct Maximal Center Gauge

    Get PDF
    We review the equivalence of maximal center gauge fixing to the problem of finding the best fit, to a given lattice gauge field, by a thin vortex configuration. This fit is necessarily worst at the location of P-plaquettes. We then compare the fits achieved in Gribov copies generated by (i) over-relaxation; (ii) over-relaxation after Landau gauge preconditioning; and (iii) simulated annealing. Simulated annealing yields the best fit if all links on the lattice are included, but the situation changes if we consider only the lattice volume exterior to P-plaquettes. In this exterior region, the fit is best for Gribov copies generated by over-relaxation, and worst for Gribov copies generated after Landau gauge preconditioning. The two fitting criteria (including or not including the P-plaquettes) yield string tensions differing by -34% to +20% respectively, relative to the full string tension. Our usual procedure (``quenched minimization'') seems to be a compromise between these criteria, and yields string tensions at an intermediate value close to the full string tension.Comment: 14 pages, 6 figure

    Malmquist Bias and the Distance to the Virgo Cluster

    Full text link
    This paper investigates the impact of Malmquist bias on the distance to the Virgo cluster determined by the H_0 Key Project using M100, and consequently on the derived value of H_0. Malmquist bias is a volume-induced statistical effect which causes the most probable distance to be different from the raw distance measured. Consideration of the bias in the distance to the Virgo cluster raises this distance and lowers the calculated value of H_0. Monte Carlo simulations of the cluster have been run for several possible distributions of spirals within the cluster and of clusters in the local universe. Simulations consistent with known information regarding the cluster and the errors of measurement result in a bias of about 6.5%-8.5%. This corresponds to an unbiased distance of 17.2-17.4 Mpc and a value of H_0 in the range 80-82 km/s/Mpc. The problem of determining the bias to Virgo illustrates several key points regarding Malmquist bias. Essentially all conventional astronomical distance measurements are subject to this bias. In addition, the bias accumulates when an attempt is made to construct "distance ladders" from measurements which are individually biased. As will be shown in the case of Virgo, the magnitude and direction of the bias are sensitive to the spatial distribution of the parent poputation from which the observed object is drawn - a distribution which is often poorly known. This leads to uncertainty in the magnitude of the bias, and adds to the importance of minimizing the number of steps in "distance ladders".Comment: 19 pages, 3 figures, Latex, To appear in Ap

    On the Use of Approximation Methods for Microcrack Shielding Problems

    Get PDF
    There is experimental evidence that stress-induced microcracking near a macrocrack tip enhances the fracture toughness of brittle materials. In considering the interaction of the macrocrack with multiple microcracks using a discrete model, it is essential to use approximation methods in order to keep the amount of the computation to a tractable level. However, when crack distances are small, the results of the approximation methods can be significantly different from the numerical solution based upon the exact formulation. The results obtained by these approximation methods will be compared with the numerical solution to show the applicability ranges in which the errors are acceptably small. The use of results obtained by the approximation methods outside applicability ranges in literature is shown to lead to incorrect conclusions concerning microcrack shielding

    Long Distance Coupling of a Quantum Mechanical Oscillator to the Internal States of an Atomic Ensemble

    Get PDF
    We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows to couple the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.Comment: 14 pages, 5 figure

    Synthetic crossed-lamellar microstructures in oxide ceramics

    Get PDF
    A process has been developed to produce a crossed-lamellar-type microstructure in mullite combining tape casting, oriented lamination, and templated grain growth. Ceramic laminates were produced with aligned rod-like grains with the alignment direction varying from layer-to-layer with abrupt interfaces between layers. Other designed microstructures are also possible using this process

    Low Thermal Expansion Coatings for Carbon/Carbon Composites

    Get PDF
    Two classes of materials are considered for low expansion protective coatings for carbon/carbon composites. They include composites containing particles which undergo allotropic phase transformations accompanied by negative volume changes with increasing temperature and anisotropic oxides which demonstrate low expansion due to microcracking. Conditions for failure of coatings by either cracking or spallation due to thermal mismatch are evaluated

    Catalytic graphitization of three-dimensional wood-derived porous scaffolds

    Get PDF
    A catalytic technique to enhance graphite formation in nongraphitizing carbons was adapted to work with three-dimensional wood-derived scaffolds. Unlike many synthetic graphite precursors, wood and other cellulosic carbons remain largely disordered after high temperature pyrolysis. Using a nickel nitrate liquid catalyst and controlled pyrolysis conditions, wood-derived scaffolds were produced showing similar graphitic content to traditional pitch-based graphite while retaining the high-aspect ratio pores of the precursor wood microstructure. Graphite formation was studied as a function of processing time and pyrolysis temperature, and the resulting carbons were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and electron microscopy techniques
    • …
    corecore