555 research outputs found

    Spin and orbital excitation spectrum in the Kugel-Khomskii model

    Full text link
    We discuss spin and orbital ordering in the twofold orbital degenerate superexchange model in three dimensions relevant to perovskite transition metal oxides. We focus on the particular point on the classical phase diagram where orbital degeneracy is lifted by quantum effects exclusively. Dispersion and damping of the spin and orbital excitations are calculated at this point taking into account their mutual interaction. Interaction corrections to the mean-field order parameters are found to be small. We conclude that quasi-one-dimensional Neel spin order accompanied by the uniform d_{3z^2-r^2}-type orbital ordering is stable against quantum fluctuations.Comment: 4 pages with 3 PS figures, 1 table, RevTeX, accepted to Phys. Rev. B. Rapid Communicatio

    Trimer Formation and Metal-Insulator Transition in Orbital Degenerate Systems on a Triangular Lattice

    Full text link
    As a prototypical self-organization in the system with orbital degeneracy, we theoretically investigate trimer formation on a triangular lattice, as observed in LiVO2. From the analysis of an effective spin-orbital coupled model in the strong correlation limit, we show that the previously-proposed orbital-ordered trimer state is not the lowest-energy state for a finite Hund's-rule coupling. Instead, exploring the ground state in a wide range of parameters for a multiorbital Hubbard model, we find an instability toward a different orbital-ordered trimer state in the intermediately correlated regime in the presence of trigonal crystal field. The trimer phase appears in the competing region among a paramagnetic metal, band insulator, and Mott insulator. The underlying mechanism is nesting instability of the Fermi surface by a synergetic effect of Coulomb interactions and trigonal-field splitting. The results are compared with experiments in triangularlattice compounds, LiVX2 (X=O, S, Se) and NaVO2.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    PEY1 ANXIETY AND DEPRESSION IN WET AGE-RELATED MACULAR DEGENERATION (ARMD)

    Get PDF

    Superconductivity Induced by Bond Breaking in the Triangular Lattice of IrTe2

    Get PDF
    IrTe2, a layered compound with a triangular iridium lattice, exhibits a structural phase transition at approximately 250 K. This transition is characterized by the formation of Ir-Ir bonds along the b-axis. We found that the breaking of Ir-Ir bonds that occurs in Ir1-xPtxTe2 results in the appearance of a structural critical point in the T = 0 limit at xc = 0.035. Although both IrTe2 and PtTe2 are paramagnetic metals, superconductivity at Tc = 3.1 K is induced by the bond breaking in a narrow range of x > xc in Ir1-xPtxTe2. This result indicates that structural fluctuations can be involved in the emergence of superconductivity.Comment: 10 pages, 4 figure

    Constraining q_0 with Cluster Gas Mass Fractions: A Feasibility Study

    Get PDF
    As the largest gravitationally bound objects in the universe, clusters of galaxies may contain a fair sample of the baryonic mass fraction of the universe. Since the gas mass fraction from the hot ICM is believed to be constant in time, the value of the cosmological deceleration parameter q0q_0 can be determined by comparing the calculated gas mass fraction in nearby and distant clusters (Pen 1997). To test the potential of this method, we compare the gas fractions derived for a sample of luminous (LX>1045L_X > 10^{45} erg s1^{-1}), nearby clusters with those calculated for eight luminous, distant (0.3<z<0.60.3 < z < 0.6) clusters using ASCA and ROSAT observations. For consistency, we evaluate the gas mass fraction at a fixed physical radius of 1 h501h_{50}^{-1} Mpc (assuming q0=0.0q_0=0.0). We find a best fit value of q0=0.07q_0 = 0.07 with -0.47 < q_0 < 0.67 at 95% confidence. We also determine the gas fraction using the method of Evrard, Metzler, & Navarro (1997) to find the total mass within r500r_{500}, the radius where the mean overdensity of matter is 500 times the critical density. In simulations, this method reduces the scatter in the determination of gravitational mass without biasing the mean. We find that it also reduces the scatter in actual observations for nearby clusters, but not as much as simulations suggest. Using this method, the best fit value is q0=0.04q_0 = 0.04 with -0.50 < q_0 < 0.64. The excellent agreement between these two methods suggests that this may be a useful technique for determining q0q_0. The constraints on q0q_0 should improve as more distant clusters are studied and precise temperature profiles are measured to large radii.Comment: 8 pages, 4 figures, uses emulateapj.sty, onecolfloat.st

    Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications

    Full text link
    We use the halo model of clustering to compute two- and three-point correlation functions for weak lensing, and apply them in a new statistical technique to measure properties of massive halos. We present analytical results on the eight shear three-point correlation functions constructed using combination of the two shear components at each vertex of a triangle. We compare the amplitude and configuration dependence of the functions with ray-tracing simulations and find excellent agreement for different scales and models. These results are promising, since shear statistics are easier to measure than the convergence. In addition, the symmetry properties of the shear three-point functions provide a new and precise way of disentangling the lensing E-mode from the B-mode due to possible systematic errors. We develop an approach based on correlation functions to measure the properties of galaxy-group and cluster halos from lensing surveys. Shear correlations on small scales arise from the lensing matter within halos of mass M > 10^13 solar masses. Thus the measurement of two- and three-point correlations can be used to extract information on halo density profiles, primarily the inner slope and halo concentration. We demonstrate the feasibility of such an analysis for forthcoming surveys. We include covariances in the correlation functions due to sample variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters is achievable with surveys like the CFHT Legacy survey, and significantly better with future surveys. Our statistical approach is complementary to the standard approach of identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28). Matches version for publication in MNRA

    Spin Order due to Orbital Fluctuations: Cubic Vanadates

    Full text link
    We investigate the highly frustrated spin and orbital superexchange interactions in cubic vanadates. The fluctuations of t2gt_{2g} orbitals trigger a {\it novel mechanism of ferromagnetic interactions} between spins S=1 of V3+^{3+} ions along one of the cubic directions which operates already in the absence of Hund's rule exchange JHJ_H, and leads to the C-type antiferromagnetic phase in LaVO3_3. The Jahn-Teller effect can stabilize the orbital ordering and the G-type antiferromagnetic phase at low temperatures, but large entropy due to orbital fluctuations favors again the C-phase at higher temperatures, as observed in YVO3_3.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Ground State and Excitations of Spin Chain with Orbital Degeneracy

    Full text link
    The one dimensional Heisenberg model in the presence of orbital degeneracy is studied at the SU(4) symmetric viewpoint by means of Bethe ansatz. Following Sutherland's previous work on an equivalent model, we discuss the ground state and the low-lying excitations more extensively in connection to the spin systems with orbital degeneracy. We show explicitly that the ground state is a SU(4) singlet. We study the degeneracies of the elementary excitations and the spectra of the generalized magnons consisting of these excitations. We also discuss the complex 2-strings in the context of the Bethe ansatz solutions.Comment: Revtex, 9 pages, 3 figures; typos correcte

    Optical investigation on the electronic structures of Y_{2}Ru_{2}O_{7}, CaRuO_{3}, SrRuO_{3}, and Bi_{2}Ru_{2}O_{7}

    Full text link
    We investigated the electronic structures of the bandwidth-controlled ruthenates, Y2_{2}Ru2_{2}O7_{7}, CaRuO3_{3}, SrRuO3_{3}, and Bi2_{2}Ru2% _{2}O7_{7}, by optical conductivity analysis in a wide energy region of 5 meV \sim 12 eV. We could assign optical transitions from the systematic changes of the spectra and by comparison with the O 1ss x-ray absorption data. We estimated some physical parameters, such as the on-site Coulomb repulsion energy and the crystal-field splitting energy. These parameters show that the 4dd orbitals should be more extended than 3dd ones. These results are also discussed in terms of the Mott-Hubbard model.Comment: 12 pages (1 table), 3 figure

    Orbital excitations in LaMnO3_3

    Get PDF
    We study the recently observed orbital excitations, orbitons, and treat electron-electron correlations and lattice dynamics on equal footing. It is shown that the orbiton energy and dispersion are determined by both correlations and lattice-vibrations. The electron-phonon coupling causes satellite structures in the orbiton spectral function and the elementary excitations of the system are mixed modes with both orbital and phonon character. It is proposed that the satellite structures observed in recent Raman-scattering experiments on LaMnO3_3 are actually orbiton derived satellites in the phonon spectral function, caused by the phonon-orbiton interaction.Comment: 4 pages, 3 figures embedde
    corecore