between 40 and 80, were recruited by 40 diabetes clinics. A pilot test-retest validity testing was performed on the same 10 respondents following 2 weeks interval. Ten self-assessment items were developed for exploring preference on home glucometers; 3 items were developed for the following domains: needs for better understanding on diabetes (yes/no); blood glucose self-monitoring period (≤6 months, >6 ≤18 months, >18 months <3 years, >3 years, >6 years); access to diabetes clinics (regularly scheduled—yes/no). The Pearson chi-square statistic for two-way tables was used to test the association between variables; alpha level of 0.05 was used in all analyses. RESULTS: Patients were comparable for sex within each class of age (p = 0.670 / 40–50 years; p = 0.152 / 50–60 years; p = 0.371 / 60–70 years; p = 0.370 / 70–80 years). Unsatisfied (u) and satisfied (s) patients on general information on diabetes respectively decreased and grew with increasing age: 60.98% (u), 39.02% (s) / 40–50 years; 52.14% (u), 47.86% (s) / 50–60 years; 54.23% (u), 45.77% (s) / 60–70 years; 41.67% (u), 58.33% (s) / 70–80 years (p = 0.03) without correlating to SBGM period (p = 0.690). Frequency of accesses to diabetes clinics increases with age from 40 to 80 (p = 0.004). CONCLUSIONS: Patient perceived dissatisfaction with general information on diabetes decreases with age and is independent of SBGM period. Further studies have to be performed to evaluate if a better perceived knowledge of the disease can improve adherence to the treatment and clinical outcomes.

TREATMENT SATISFACTION IN SUBJECTS WITH TYPE-2 DIABETES RECEIVING INSULIN GLARGINE

Davies M1, Comin R2, Sharplin P3, Mechihe S4, Storms F, on behalf of the AT Lawtus Study Group 5

1University Hospitals of Leicester, Leicester, UK; 2Hospital Clinic de Barcelona, Barcelona, Spain; 3Sanofi-Aventis, Auckland, New Zealand; 4Sanofi-Aventis, Paris, France; 5Diabetes Centrum Bilthoven, The Netherlands.

OBJECTIVES: To assess treatment satisfaction (TS) in a large population of Type-2 diabetes subjects (T2DM) treated with insulin glargine (GLAR). METHODS: The 24-week, multinational ATLANTUS study investigated TS with GLAR initiation and titration (target FBG ≤5.5 mmol/L) according to two algorithms (Alg): Alg1 was physician based; Alg2 involved subject self-titration. TS were assessed using the Diabetes Treatment Satisfaction Questionnaire status (DTSQs) and change (DTSQC). Since blood glucose (BG) controls and stability (MODD, MAGE, 8-point BG profiles) improved significantly, relationships with TS were explored. RESULTS: TS was evaluated in a group of subjects from the eight countries in which the questionnaire was validated, with 1289 subjects at baseline and 1023 subjects at endpoint. Mean baseline DTSQs scores were comparable between Alg. (26.5 vs. 26.1) with significant improvements at endpoint (both +4.99; p < 0.001). Perceived hyperglycaemia significantly decreased (p < 0.001) with both Alg. TS evolution over time (DTSQC) improved by +13.6 with both Alg. Perceived hypo-glycaemia decreased in the DTSQC. There were significant (p < 0.0001) correlations between fasting BG, mean 8-point BG and evolution of TS scores and perceived hyperglycaemia. Evolution of perceived hyperglycaemia was also associated with movements towards BG stability (MAGE: p < 0.0001; MODD: p = 0.0004). A similar pattern of results was seen in the Type-1 population. CONCLUSIONS: This study provides one of the largest assessments of TS to date and shows that aggressive titration of GLAR is associated with significantly improved TS. Self-titration was associated with greater improvements in perceived hyperglycaemia versus physician-based titration. Perceived overall TS, hyperglycaemia and hypoglycaemia at endpoint were all correlated with movements towards BG control and stability, providing potential explanation as to why subjects feel better with GLAR than their prior therapy.

ANXIETY AND DEPRESSION IN WET AGE-RELATED MACULAR DEGENERATION (ARMD)

Maurel F1, Hieke K1, Negrieri C1, Priol G1, Berdeaux G1, Le Pen C1

1Arenis, Neuilly sur Seine, Hauts de Seine, France; 2Neos Health, Binningen, Switzerland; 3PBE-Consulting,Verona, Italy; 4Alcon France SA, Rueil-Malmaison, Hauts de Seine, France

OBJECTIVE: To study the relationship of ARMD severity to anxiety and depression in three European countries: France, Germany and Italy. METHODS: Patients with wet ARMD were included in a retrospective cross-sectional survey. Socio-demographic and medical data were collected during a visit by a retina specialist. Anxiety and depression were assessed with the Hospital Anxiety and Depression Scale (HADS). Two thresholds were used to dichotomize visual acuity (VA): 20/40 for the best eye (BE) and 20/200 for the worst eye (WE). Comparisons with general population matched on age and gender were possible for the German patients (Hinz, 2004). Analysis of variance was performed to estimated the effect of each eye adjusted on age, gender and country. RESULTS: A total of 360 patients were included. The patients (40% male) averaged 77 years of age and 2.3 years of disease duration. VA was 0.49 LogMAR on the BE the day of the visit. In the German population, ARMD patient anxiety score was higher than the general population both in male (5.4 vs. 4.7) and female (7.7 vs. 5.7). Some associations were found between the severity of the disease and the depression score (BE P < 0.004) and (WE P < 0.12) while no association was found on the anxiety score. The prevalence of severe depression according to HADS was 0% in the less severe (BE > = 20/40; WE > = 20/200) but 7.6% in the most severe group (BE < 20/40; WE < 20/200). CONCLUSION: Associations were found between ARMD and depression and anxiety as measured by the HADS. The severe depression prevalence rate increases when both eyes are affected by the disease.

USE OF NEURAL NETWORKS TO PREDICT NIGHT INTRA-OCULAR PRESSURE (IOP) PEAK CONTROL BY PROSTAGLANDIN ANALOGUES

Nordmann JP1, Berdeaux G2

1Hospital XV–XX, Paris, Paris, France; 2Alcon France SA, Rueil-Malmaison, Hauts de Seine, France

OBJECTIVE: The control of daily IOP variations is a key driver of visual field protection. IOP is rarely measured during the night. METHODS: Two clinical trials documenting IOP every 4 hours over several days were pooled. Nocturnal IOP peak was defined as the maximum value observed at midnight and 4 AM and was related to diurnal measures (taken at 8:00, 12:00, 16:00 and 20:00). We employed neural networks that included linear, radial basis, and multi-layer perceptron (MLP) selected to minimize error and take into account diversity. The probability of a nocturnal IOP peak > 17.5 mmHg was estimated. The neural network model was then applied to data from a trial comparing timolol, travoprost and latanoprost over 1 year. Drug comparisons were made using a mixed linear model. RESULTS: 440 pairs of day and night IOP measures were identified. A MLP (2:7:1) model was selected based on sensitivity and specificity which were both close to one. The analysis of the MLP output showed afternoon IOPs were stronger predictors of night peaks than morning IOPs. Applying