171 research outputs found

    Psilocybin prevents symptoms of hyperarousal and enhances novel object recognition in rats exposed to the single prolonged stress paradigm

    Get PDF
    Pharmacotherapy for stress-related psychological disorders remains inadequate. Patients who are treated with conventional pharmacological agents frequently report negligeable symptom reduction, and, in most cases, less than 50% experience full remission. Clearly, there is a need for additional pharmaceutical research into both established and novel approaches to alleviate these conditions. Over the past several years, there has been a renewed interest in the use of psychedelics to aid in the treatment of psychological disorders. Several studies have reported promising results in patients with major depression, anxiety disorders, and post-traumatic stress disorder (PTSD) following treatment with psychedelic agents such as lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), ayahuasca, ketamine, and psilocybin. However, the precise behavioral and neurobiological mechanisms for these effects remain unclear. Thus, we aimed to develop an animal model of PTSD that involved prophylactic treatment with psilocybin, a 5-HT2A agonist, that could be used to further understand the mechanisms underlying the benefit of psychedelic substances in treating these disorders. Adult male and female Sprague-Dawley rats were subjected to the single prolonged stress (SPS) paradigm, including 2 hours of physical restraint, 15 minutes of forced swim, and ether vapor exposure until loss of consciousness. Five minutes following ether-induced loss of consciousness, the rats were intraperitoneally injected with vehicle (0.9% saline) or psilocybin (1 mg/kg). One week later, the rats underwent a battery of behavioral tests, including the elevated plus maze (EPM), startle response assessment, open field testing, and novel object recognition (NOR) testing. No effects of SPS or psilocybin were observed for EPM behavior. SPS led to enhanced startle responses in males, but not females, which was prevented by psilocybin. SPS also increased locomotor activity in the open field in males, but not females, and this effect was not prevented by psilocybin. SPS had no impact on NOR memory in males, but enhanced memory in females. Interestingly, psilocybin administration, alone or in combination with SPS, enhanced NOR memory in males only. These findings support a complex interaction between the administration of psilocybin and the prevention of stress-induced behavioral sequelae that depends on both sex and the type of behavioral task

    Low-dose psilocybin enhances novel object recognition but not inhibitory avoidance in adult rats

    Get PDF
    Given the recently renewed interest in using psychedelics to aid in the treatment of psychological disorders, we aimed to examine the impact of psilocybin, a 5-HT2A agonist, on learning and memory in rodents. Previous work has demonstrated that psilocybin and other 5-HT2A agonists can enhance fear conditioning, fear extinction, and novel object recognition (NOR). Thus, we predicted that low doses of psilocybin would enhance inhibitory avoidance (IA) and NOR memory. In the first experiment, adult male and female Sprague-Dawley rats underwent step-through IA training (involving 0.45, 0.65, or 1 mA scrambled footshock) and were injected intraperitoneally (i.p.) with vehicle (0.9% saline) or psilocybin (1 mg/kg) immediately afterward. Rats were tested for their IA memory two days later. In the second experiment, adult male and female Sprague-Dawley rats were acclimated to an open field apparatus for 5 minutes on Day 1. The next day, the rats were given i.p. injections of vehicle or psilocybin (0.1 mg/kg) 10 minutes before undergoing NOR training, during which they were exposed to two replicas of an identical object for 3 minutes. On Day 3, one of the objects from NOR training was exchanged for a novel object; rats were exposed to this novel object and a new replica of the object from Day 2 (i.e., familiar object) for 5 minutes. The results showed that psilocybin had no significant impact on IA memory but enhanced novel object recognition memory in both males and females. The differential impact of psilocybin on IA memory and novel object recognition could be explained by the different doses of psilocybin or the different times of drug administration used for each task. Alternatively, they may suggest that psilocybin exerts distinct effects on different types of learning

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8

    Get PDF
    Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.</p

    Bayesian Solar Wind Modeling with Pulsar Timing Arrays

    Get PDF
    Using Bayesian analyses we study the solar electron density with the NANOGrav 11-year pulsar timing array (PTA) dataset. Our model of the solar wind is incorporated into a global fit starting from pulse times-of-arrival. We introduce new tools developed for this global fit, including analytic expressions for solar electron column densities and open source models for the solar wind that port into existing PTA software. We perform an ab initio recovery of various solar wind model parameters. We then demonstrate the richness of information about the solar electron density, nEn_E, that can be gleaned from PTA data, including higher order corrections to the simple 1/r21/r^2 model associated with a free-streaming wind (which are informative probes of coronal acceleration physics), quarterly binned measurements of nEn_E and a continuous time-varying model for nEn_E spanning approximately one solar cycle period. Finally, we discuss the importance of our model for chromatic noise mitigation in gravitational-wave analyses of pulsar timing data and the potential of developing synergies between sophisticated PTA solar electron density models and those developed by the solar physics community.Comment: 22 pages, 7 figures, Submitted to Ap

    The NANOGrav 12.5-Year Data Set: Polarimetry and Faraday Rotation Measures from Observations of Millisecond Pulsars with the Green Bank Telescope

    Full text link
    In this work, we present polarization profiles for 23 millisecond pulsars observed at 820 MHz and 1500 MHz with the Green Bank Telescope as part of the NANOGrav pulsar timing array. We calibrate the data using Mueller matrix solutions calculated from observations of PSRs B1929+10 and J1022+1001. We discuss the polarization profiles, which can be used to constrain pulsar emission geometry, and present both the first published radio polarization profiles for nine pulsars and the discovery of very low intensity average profile components ("microcomponents") in four pulsars. Using the Faraday rotation measures, we measure for each pulsar and use it to calculate the Galactic magnetic field parallel to the line of sight for different lines of sight through the interstellar medium. We fit for linear and sinusoidal trends in time in the dispersion measure and Galactic magnetic field and detect magnetic field variations with a period of one year in some pulsars, but overall find that the variations in these parameters are more consistent with a stochastic origin.Comment: 35 pages, 21 figures. Accepted to Ap

    A New Role for Translation Initiation Factor 2 in Maintaining Genome Integrity

    Get PDF
    Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA–damaging agent is present

    An unusual pulse shape change event in PSR J1713+0747 observed with the Green Bank Telescope and CHIME

    Full text link
    The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between April 16 and 17, 2021 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multi-frequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the 100-meter Green Bank Telescope (GBT) in a three-year period encompassing the shape change event, between February 2020 and February 2023. As of February 2023, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying TOA residuals display a strong non-monotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency, ν\nu) nor a change in dispersion measure (DM) alone (which would produce a delay proportional to ν2\nu^{-2}). However, it does bear some resemblance to the two previous "chromatic timing events" observed in J1713+0747 (Demorest et al. 2013; Lam et al. 2016), as well as to a similar event observed in PSR J1643-1224 in 2015 (Shannon et al. 2016).Comment: 19 pages, 8 figures. Submitted to ApJ. Data available at https://doi.org/10.5281/zenodo.723645
    corecore