5,519 research outputs found
Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and liquid nitrogen Final report, 15 Jul. 1964 - 15 Dec. 1967
Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and nitrogen in transparent plastic venturi tube
Cavitation in liquid cryogens
Cavitation in liquid hydrogen and nitrogen flowing in transparent plastic ventur
Incipient and developed cavitation in liquid cryogens
Cavitational flow of liquid nitrogen and liquid hydrogen in Venturi tub
SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices
Recently Pluhar and Weidenmueller [Ann. Phys. (N.Y.) Vol 297, 344 (2002)]
showed that the eigenvectors of the matrix of second moments of embedded
Gaussian unitary ensemble of random matrices generated by k-body interactions
(EGUE(k)) for m fermions in N single particle states are SU(N) Wigner
coefficients and derived also an expression for the eigenvalues. Going beyond
this work, we will show that the eigenvalues of this matrix are square of a
SU(N) Racah coefficient and thus the matrix of second moments of EGUE(k) is
solved completely by SU(N) Wigner-Racah algebra.Comment: 16 page
Hypergraphic LP Relaxations for Steiner Trees
We investigate hypergraphic LP relaxations for the Steiner tree problem,
primarily the partition LP relaxation introduced by Koenemann et al. [Math.
Programming, 2009]. Specifically, we are interested in proving upper bounds on
the integrality gap of this LP, and studying its relation to other linear
relaxations. Our results are the following. Structural results: We extend the
technique of uncrossing, usually applied to families of sets, to families of
partitions. As a consequence we show that any basic feasible solution to the
partition LP formulation has sparse support. Although the number of variables
could be exponential, the number of positive variables is at most the number of
terminals. Relations with other relaxations: We show the equivalence of the
partition LP relaxation with other known hypergraphic relaxations. We also show
that these hypergraphic relaxations are equivalent to the well studied
bidirected cut relaxation, if the instance is quasibipartite. Integrality gap
upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap
of these hypergraph relaxations in general graphs. In the special case of
uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~
1.216. By our equivalence theorem, the latter result implies an improved upper
bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010
Comparison of mass limiting two-phase flow in a straight tube and in a nozzle
Mass-limiting and near mass-limiting two-phase flow in straight tube and nozzle of refrigerant flow loop syste
Cavitation inception in liquid nitrogen and liquid hydrogen flowing in a venturi Interim report, 15 Jul. 1964 - 15 Jul. 1967
Cavitation characteristics of liquid hydrogen, and liquid nitrogen flow in plastic ventur
Reorientation Transition in Single-Domain (Ga,Mn)As
We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy
fields in (Ga,Mn)As results in a magnetization reorientation transition and an
anisotropic AC susceptibility which is fully consistent with a simple single
domain model. The uniaxial and biaxial anisotropy constants vary respectively
as the square and fourth power of the spontaneous magnetization across the
whole temperature range up to T_C. The weakening of the anisotropy at the
transition may be of technological importance for applications involving
thermally-assisted magnetization switching.Comment: 4 pages, 4 figure
DC-transport properties of ferromagnetic (Ga,Mn)As semiconductors
We study the dc transport properties of (Ga,Mn)As diluted magnetic
semiconductors with Mn concentration varying from 1.5% to 8%. Both diagonal and
Hall components of the conductivity tensor are strongly sensitive to the
magnetic state of these semiconductors. Transport data obtained at low
temperatures are discussed theoretically within a model of band-hole
quasiparticles with a finite spectral width due to elastic scattering from Mn
and compensating defects. The theoretical results are in good agreement with
measured anomalous Hall effect and anisotropic longitudinal magnetoresistance
data. This quantitative understanding of dc magneto-transport effects in
(Ga,Mn)As is unparalleled in itinerant ferromagnetic systems.Comment: 3 pages, 3 figure
- …
