5,519 research outputs found

    Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and liquid nitrogen Final report, 15 Jul. 1964 - 15 Dec. 1967

    Get PDF
    Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and nitrogen in transparent plastic venturi tube

    Cavitation in liquid cryogens

    Get PDF
    Cavitation in liquid hydrogen and nitrogen flowing in transparent plastic ventur

    Incipient and developed cavitation in liquid cryogens

    Get PDF
    Cavitational flow of liquid nitrogen and liquid hydrogen in Venturi tub

    SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices

    Full text link
    Recently Pluhar and Weidenmueller [Ann. Phys. (N.Y.) Vol 297, 344 (2002)] showed that the eigenvectors of the matrix of second moments of embedded Gaussian unitary ensemble of random matrices generated by k-body interactions (EGUE(k)) for m fermions in N single particle states are SU(N) Wigner coefficients and derived also an expression for the eigenvalues. Going beyond this work, we will show that the eigenvalues of this matrix are square of a SU(N) Racah coefficient and thus the matrix of second moments of EGUE(k) is solved completely by SU(N) Wigner-Racah algebra.Comment: 16 page

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010

    Comparison of mass limiting two-phase flow in a straight tube and in a nozzle

    Get PDF
    Mass-limiting and near mass-limiting two-phase flow in straight tube and nozzle of refrigerant flow loop syste

    Cavitation inception in liquid nitrogen and liquid hydrogen flowing in a venturi Interim report, 15 Jul. 1964 - 15 Jul. 1967

    Get PDF
    Cavitation characteristics of liquid hydrogen, and liquid nitrogen flow in plastic ventur

    Reorientation Transition in Single-Domain (Ga,Mn)As

    Full text link
    We demonstrate that the interplay of in-plane biaxial and uniaxial anisotropy fields in (Ga,Mn)As results in a magnetization reorientation transition and an anisotropic AC susceptibility which is fully consistent with a simple single domain model. The uniaxial and biaxial anisotropy constants vary respectively as the square and fourth power of the spontaneous magnetization across the whole temperature range up to T_C. The weakening of the anisotropy at the transition may be of technological importance for applications involving thermally-assisted magnetization switching.Comment: 4 pages, 4 figure

    DC-transport properties of ferromagnetic (Ga,Mn)As semiconductors

    Full text link
    We study the dc transport properties of (Ga,Mn)As diluted magnetic semiconductors with Mn concentration varying from 1.5% to 8%. Both diagonal and Hall components of the conductivity tensor are strongly sensitive to the magnetic state of these semiconductors. Transport data obtained at low temperatures are discussed theoretically within a model of band-hole quasiparticles with a finite spectral width due to elastic scattering from Mn and compensating defects. The theoretical results are in good agreement with measured anomalous Hall effect and anisotropic longitudinal magnetoresistance data. This quantitative understanding of dc magneto-transport effects in (Ga,Mn)As is unparalleled in itinerant ferromagnetic systems.Comment: 3 pages, 3 figure
    corecore