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THERMODYNAMIC DEPRESSIONS WITHIN CAVITIES AND
'CAVITATION INCEPTION IN LIQUID HYDROGEN AND LIQUID NITROGEN

J. Hord, D. K. Edmonds, and D. R. Millhiser

ABSTRACT

Cavitation characteristics of liquid hydrogen and liquid nitrogen
in a transparent plastic venturi have been determined. The experimental
data are presented in tabular and graphical form. Conventional cavitation-
inception-parameter and head-velocity curves are given over the range
of experimental temperatures (36. 5 to 41°R for hydrogen and 140 to 170°R
for nitrogen) and inlet velocities (70 to 185 ft/sec for hydrogen and 20 to
70 ft/sec for nitrogen). Minimum local wall pressure at incipience was
calculated!to be less than bulkstream vapor pressure by as much as 328

feet of hydrogen head and 63 feet of nitrogen head in some inception tests.

Thermodynamic data, consisting of pressure and temperature
measurements within fully developed cavities, are also given. Minimum
measured1 cavity pressure was less than bulkstream vapor preésure by
as much as 651 feet of hydrogen head and 44 feet of nitrogen head; mea-
sured temperatures and pressures within the cavities were generally not
in thermodynamic equilibrium. At constant bulkstream temperature,
cavity pressure depressions increased with increasing velocities and
cavity length. For fixed velocities, cavity pressure depressions in-
creased with increasing fluid temperature and cavity length. Existing
theory is used to obtain equations which correlate the experimental data

for developed cavitation in liquid hydrogen and liquid nitrogen.

1 - Variations in test conditions preclude direct comparison of minimum
calculated (at incipience) and minimum measured pressure depressions.
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1. Introduction

Cavitation is usually defined as the formation, caused by a reduc-
tion in pressure, of a vapor phase within a flowing liquid or at the
interface between a liquid and a solid. Since the formation and collapse
of vapor cavities alters flow patterns, cavitation may reduce the efficiency
of pumping machinery [1], and reduce the precision of flow measuring
devices. Collapse of these vapor cavities can also cause serious erosion
damage [2] to fluid-handling equipment. While the noncavitating per-
formance of hydraulic equipment may be predicted from established
similarity laws, cavitating performance can seldom be predicted from
fluid-to-fluid. The effects of fluid properties on cavitation performance
are well recognized [3-12] and require more understanding to develop

improved similarity relations [13] for equipment design.

NASA has undertaken a program [1] to determine various cavita-
tion characteristics and the thermodynamic behavior of different fluids
in an effort to obtain improved design criteria to aid in the prediction
of cavitating pump performance. The experimental study described

herein was conducted in support of this program.

Liquid hydrogen and liquid nitrogen were chosen as test fluids for
this study for the following reasons: (l) the ultimate goal of this pro-
gram is to acquire sufficient knowledge to permit intelligent design of
pumps for near-boiling liquids and (2) predictive analyses indicated [ 1]
that the physical properties of hydrogen and nitrogen make them par-
ticularly desirable test fluids. The objective of this study was to deter-
mine the flow and thermodynamic conditions required to induce incipient

and developed cavitation on the walls of a transparent plastic venturi




using liquid hydrogen and liquid nitrogen. The shape of the venturi
was chosen to duplicate the test section used by NASA [13-17]. In
the inception studies, the test section inlet velocity was varied from
70 to 185 ft/sec with hydrogen and from 20 to 70 ft/sec with nitrogen.
Inlet temperatures were varied from 36.5 to 41°R with hydrogen and
from 140 to 170°R with nitrogen, in order to determine the effects of
temperature upon cavitation inception. Both incipient and desinent
cavitation data were acquired with no noticeable hysteresis; i. e., the
flow conditions corresponding to vapor inception are identical whether
the data point is approached from non-cavitating or fully developed
cavitating flow. In this paper, incipience refers to the appearance

of barely visible cavities, whether they be due to incipient or desi-

nent cavitation.

Pressure and temperature profiles within fully developed
cavities were measured and are referred to herein as thermodynamic
data. Nominal cavity lengths studied were 1.25, 2, and 3. 25 inches
with liquid hydrogen and 3. 25 inches with liquid nitrogen. Venturi
inlet velocities were varied from 110 to 200 ft/sec in hydrogen and
from 35 to 75 ft/sec in nitrogen. Inlet temperatures ranged from
36.5 to 42.5°R in hydrogen and from 140 to 160°R in nitrogen. Since
the bulkstream vapor pressure exceeds the measured cavity pressure
and the saturation pressure corresponding to the measured cavity
temperature, the measured pressure and temperature depressions
within the cavity are appropriately called "thermodynamic depres-

sions.'" A similarity equation has been suggested [ 13] for corre-

lating cavitation data for a particular test item from fluid to fluid; this




correlation is also useful in extending the velocity and temperature
range of data for any given fluid. The experimental data from this study
have been used to evaluate the exponents on various terms in this corre-

lating equation.

All data reported here are intended to supplement that given in
references [13-17] for a geometrically similar, but 1.414 times as

large, test section.
2. Apparatus

The facility used for this study consisted of a blow -down system
with the test section located between the supply and receiver dewars;
see figure 2. 1. Dewars and piping were vacuum shielded to minimize
heat transfer to the test fluid. Flow control was attained by regulating
the supply and receiver dewar pressures. Pressure and volume capaci-
ties of the supply and receiver vessels are indicated on figure 2.1. The
receiver dewar pressure control valving limited the inlet velocity, Vo’
to around 200 ft/sec in hydrogen, while the supply dewar pressure rating

limited the inlet velocity to about 70 ft/sec in nitrogen.

Valves located on each side of the test section permit flow stop-
page in the event of venturi failure while testing with liquid hydrogen.
A plenum chamber was installed upstream of the test section to assure
uniform non-cavitating flow at the test section inlet. The supply dewar

was equipped with a 5 kW heater which was used to heat the test fluid.

2.1 Test Section
A photograph of the test section as viewed through one of the win-
dows in the vacuum jacket is shown in figure 2.2. The transparent plas-
tic venturi was flanged into the apparatus using high compression elasto-

meric '"O" rings. Test section details are given in figures 2.3 and 2. 4.



Referring to figure 2.3, static pressure tap No. 1 was the only instru-
ment port drilled and used in the liquid hydrogen inception tests. Some
liquid nitrogen data were acquired with all of the pressure and tempera-
ture sensing ports instrumented, figure 2.2. Since incipient cavitation
involves very small cavities at or near the minimum pressure point--
sec figures 2.4 and 2.5--the presence or absence of the additional sens-
ing ports has no effect on the inception data reported. All of the sensing
ports were used during the thermodynamic tests to determine the tempera-
ture and pressure depressions within the cavities. Cavity length was
determined from scribe marks on the plastic venturi; see figure 2.2.

The theoretical and as-built venturi contours are shown on figure 2. 4.
The test section dimensions were checked by using the plastic venturi as
a mold for a dental plaster plug. The plug was then removed and mea-
sured. Pressure distribution for non-cavitating flow across the quarter-
round contour [14, 18} is shown in figure 2.5. This pressure profile has
been confirmed using several test fluids [14-16] and data from this study,

5
and applies when (Re)D >4 x 10 .
o

2.2 Instrumentation
Location of the essential instrumentation is shown on figures 2.1

and 2. 3.

Liquid level in the supply dewar was sensed with a ten-point car-
bon resistor rake. Test fluid temperature in the supply dewar was
determined by two platinum resistance thermometers, see figure 2.1.
Fluid temperature at the flowmeter and test section inlet were also mea-
sured with platinum resistance thermometers. These platinum ther-
mometers were calibrated to provide temperature readings accurate

within * 0. 04°R. The thermometers were powered with a current source

which did not vary more than 0.0l percent. Voltage drop across the



thermometers was recorded on a 5 digit electronic voltmeter data acqui-
sition system. The overall accuracy of the platinum thermometer tem -
perature measurement is estimated to be within *0.09°R. Chromel-
constantan thermocouples were used to determine the temperature
profile within the cavities during the thermodynamic tests. The refer-
ence thermocouple was placed in the plenum chamber beside the plati-
num thermometer used to determine bulkstream temperature at the test
section inlet. The thermocouples had exposed, welded junctions, and
were constructed from one mil wire to ensure rapid response. The
thermocouple leads extending from the reference to cavity thermo -
couples were thermally lagged to the cold pipe. The signal leads which
penetrated the vacuum barrier were also tempered to the cold pipe to
minimize heat transfer to the thermocouples. Details of the thermo-
couple installation are shown on figures 2.6 and 2.7. The thermo -
couple circuit was calibrated, over the range of experimental velocities
and temperatures, from tests involving non-cavitating flow through the
venturi. Accuracy of the cavity temperature measurements is esti-

mated at + 1°R for hydrogen and £0.4°R for nitrogen.

System gage and differential pressure measurements were
obtained with pressure transducers mounted in a temperature stabilized
box near the test section. Differential Pressure measurements were
used where possible to provide maximum resolution. The pressure
transducers were calibrated via laboratory test gages at frequent inter-
vals during the test series. These transducers have a repeatability of
better than * 0.25 percent and their output was recorded on a continuous
trace oscillograph with approximately one percent resolution. The
overall accuracy of the pressure measurement, including calibration
and read-out errors is estimated to be within * 2. 0 percent. Bourdon

gages were used to monitor the various tests.



Volumetric and mass flow rates were determined via Herschel .
venturi flow meter designed to ASME Standards l19]. The internal con-
tour of this meter was verified in the same manner as the test venturi.
An error analysis of this flow device and associated pressure and tem-
perature measurements indicates an accuracy in mass flow of about

onc¢ percent.

An electronic pulsing circuit provided a common time base for
correlating data between oscillograph, digital voltmeter, and movie
film. The data were reduced by first viewing film of the test event. A
solenoid -actuated counter, installed adjacent to the test section was
energized by the electronic pulser and appears on the film, figure 2.2.
Thus, the data are reduced at the desired instant of time by simply

matching the number of voltage pulses which have elapsed.

An acoustic cavitation detection device was developed and suc-
cessfully used to determine cavitation inception. This device was found
to be more sensitive than the human eye, i.e., cavitation inception
could be detected with the acoustic transducer before it was visible to
the unaided eye. Visible incipience is frequently used as the criterion
for cavitation inception and is normally reported in the literature since
the sensitivity 120-22] of various acoustic detectors can vary appreciably.
Although the inception data presented here are based upon visible
incipience, a full description of the acoustic transducer is given for

reference in Appendix A of this paper.
2.3 Visual and Photographic Aids

Use of a plastic test section, liquid hydrogen, and relatively
high pressures precluded direct visual observation; therefore, closed-

circuit television was used to observe the tests.



Movies of cavitation tests were taken at approximately 20 frames
per second on 16 mm film. The variable speed camera was equipped
with a 75 mm lens and synchronized with a high intensity stroboscope,
providing a 3 psec exposure. The stroboscope was situated directly
opposite the camera lens and illuminated the test section through a
plastic diffuser mask; this technique provided bright field illumination
or a back-lighting effect and excellent contrast between vapor and liquid

phases in the test section.

3. Test Procedure

The following procedure refers to figure 2.1. The supply dewar
was filled with test liquid and then some of the liquid extracted through
valves A and B to cool the test section and piping. Approximately two
hours was required to cool the plastic test section without breakage.
Cooldown was monitored via platinum resistance thermometers in the
plenum chamber. Upon completion of cooldown, the contents of the
supply dewar was transferred through the test section into the receiver
dewar, and then back into the supply dewar again. This operation cooled
the entire flow system in preparation for a test. The test section and
connecting piping were kept full of liquid (at near-ambient pressure) dur-
ing preparatory and calibration periods between tests; therefore, the
plastic venturi was generally colder than the test liquid. Next, the liquid
in the supply dewar was heated to the desired temperature. Supply and
receiver dewars were then pressurized to appropriate levels and flow
started by opening valve C. In the case of non-cavitating flow, inception
was induced by lowering the receiver dewar pressure and thus increasing
the flow velocity until vapor appeared. To obtain desinent cavitation
from fully developed cavitating flow, the receiver dewar pressure was
increased until the vapor cavity was barely visible. For thermodynamic

tests, the receiver dewar pressure was adjusted to obtain the desired



cavity length. Receiver dewar pressure was remotely controlled by
mecans of a pneumatic transmitter, differential controller, and vent
valve arrangement, figure 2.1. It was necessary to increase test sec-
tion back-pressure by means of throttle valve D for some of the liquid
nitrogen tests. Flow was terminated by closing valve C. The supply
~dewar was then vented and the test liquid transferred back into the
supply dewar for another test. As previously mentioned, the entire
test event was recorded on movie film which was subsequently used to

determine incipience, desinence, and desired cavity lengths.
4, Data Analysis and Discussion
4.1 Inception Data

All of the useable experimental inception data are given in
tables 4.1 and 4.2. The same data points were mathematically tem-
perature -compensated and presented in table 4. 3. Derivation of these

compensated data is described in Appendix B of this paper.

The conventional cavitation parameter, Kiv’ for liquid hydrogen
is shown on figure 4.1. Little temperature dependency is evident in
this plot of experimental data and prompted the presentation of calcu-
lated data given on figures 4.2 and 4.3. The calculated data used in
the preparation of figures 4.2 and 4.3 are derived as explained in
Appendix B and are presented in table 4.4. The liquid nitrogen data
were handled in a similar manner and plotted on figures 4.4 and 4.5
from the data of table 4.5. Photographs of cavitation inception are

shown for both test fluids on figures 4. 6 and 4. 7.

4.1.1 Inception Data Analysis
Computed values of Kiv were plotted as a function of Vo for

both hydrogen and nitrogen. However, inspection of the plots showed




no readily discernible temperature dependence of Kiv (see figure 4.1;

nitrogen is similar and is not shown).

The temperature dependence of Kiv is complicated by the fact
that errors in the measured variable ho are magnified in the calculation

of K, as follows:
iv
o v
K, _ch[ > ] [4.1-1a]

differentiating [4.1-1a] at constant temperature and velocity there
results,

2g

dK, =—= dh . [4.1-1b]
iv 2 o

The fractional change in Kiv due to a change dhc> is obtained by divid-

ing [4.1-1b] by [4.1-1a] ,

= . [4.1-2]

The fractional change in h0 due to a change in dho is by definition

dh
o
h
o

The ratio of the fractional change in Kiv to the fractional change in h0

is obtained by dividing [4.1-2] by dh /h_,

dK, /K, h
iv_"iv o

dh /h "h -h
o' o o v

. [4.1-3]



Therefore any scatter which may occur in measuring ho will be ampli-.
h
-9
h -h ’
v

[0}

fied by the term which has values as large as six for both

hydrogen and nitrogen data given in this report.

Plots were also made of hO as a function of VO using the experi-
mental data from this study. Both hydrogen and nitrogen data showed a
distinct temperature dependence; however, there was sufficient experi-
mental variation about each desired nominal liquid temperature to cause
concern in constructing the individual isotherms. A nominal tempera-
ture or nominal isotherm is defined as that temperature which is selec-
ted to represent a specific group of data points with little temperature

variation.

A technique was devised to evaluate the effect of temperature

on the data and is detailed in Appendix B of this report.

4.2 Thermodynamic Data
Selected thermodynamic data are given in table 4. 6 for liquid
hydrogen and table 4.7 for liquid nitrogen. Profiles of pressure depres -
sion are given on figures 4.8 to 4.22 for liquid hydrogen and figures

4.23 to 4. 34 for liquid nitrogen.

Photographs of fully developed cavities in liquid hydrogen and
liquid nitrogen are shown in figures 4. 35 and 4.36. Inlet velocity and
temperature were observed to have very little effect on the appearance
of cavitating hydrogen and a pronounced effect on the appearance of

nitrogen cavities.

4.2.1 Thermodynamic Data Analysis
The pressure depression in the cavitated region is determined
by subtracting the measured cavity pressure in one case and the sat-

uration pressure associated with the measured cavity temperature in

10




the other case, from the vapor pressure of the liquid entering the test

. section.

The calculation of feet of head from psi requires evaluation of the
liquid density at the point of measurement. Measured pressures and
temperatures at the test section inlet were used to obtain head data for
the inception tests; however, the liquid density is not so easily obtained
from the thermodynamic data. Figures 4.8 to 4. 34 indicate that the
measured pressures and temperatures, within the cavities, are generally
not in equilibrium. Also, due to the thermal expansivity of liquid hydro-
gen, the bulkstream temperature changes appreciably as the liquid flows
through the venturi. The following methods were used to calculate feet
of head from the thermodynamic measurements: (1) Head (hn) was cal=-
culated from measured cavity pressure by using the saturation density at
the measured pressure. (2) Head (hn, T) was calculated from measured
cavity temperature by using the saturation density at the measured tem-
perature. Both values of head are given in tables 4. 6 and 4. 7 for the two

test fluids.

The cavitation parameter for fully developed cavitation, Kv’ was

calculated and tabulated for each run.

The similarity equation [ 13] (used for correlation of thermo-
dynamic cavitation data in similar test items) was fitted with exponents
for both hydrogen and nitrogen, using data from this experiment. The
purpose [ 1] of this equation is to predict the cavitating performance of
a test item from fluid-to-fluid and from one temperature to another when
limited data from a single fluid are available. The similarity equation
in its basic form is given [13] as

0.5 t

@ X v )
> - @, [ ) e

y TE v, ref

11



the symbols are identified in the nomenclature of this paper. Gelder,

et.al.[13] equate the cavity thickness term in [4.2-1] to unity and indi-

vidually evaluate the exponents on the various terms in [4.2-1] to account

for differences intheoryand experiment; the modified expression may be

written

B = (B) ' arefjn(xrefj}( V0 )p [4.2-2]
= ref& o X Vo, re ' T

where the exponents m, n, and p are evaluated from the experimental
data and theoretical data [ 13] for B---see following discussion. Any
single experiment may be chosen to provide the reference data in this
equation. In this study the exponents were obtained from a least squares
fitting technique and a digital computer; the results of the computer pro-
gram are given in tables 4. 8 and 4. 9 for liquid hydrogen and liquid nitro=-
gen, respectively. The exponents obtained by Gelder, et al.,[13] from
Freon 114 data are included in these tables f‘or comparison. In equation
[4.2-2] the physical properties are evaluated at Po and TO and Br is

ef

. 1 . _ .
obtained from theory [13] using (PV PZ)re and To Choosing

f , ref’
values for m, n, and p, the B factor may be computed from [4.2-2].
To evaluate the standard deviation in tables 4.8 and 4. 9, Bt for each
data point is obtained from theory in the same manner as B_ .. The

ref
standard deviation in B factor is minimized in the computer ;rogram
when one or more of the exponents is selected by the computer; the ab-
solute minimum standard deviation is obtained when all three exponents
are selected by the computer. The standard deviation is simply com-

puted in those cases where the exponents are not selected by the com-

puter.

12




4.3 Discussion of Data
4.3.1 Discussion of Inception Data

It was pointed out earlier thatno temperature dependence could
be determined from the Kiv versus Vo plots when the uncompensated
experimental data were used, figure 4.1. However, once the nominal
ho versus VO isotherms were established by mathematical temperature
compensation, the Kiv versus V0 nominal isotherms may be computed

from the basic definition of Kiv'

Data on figures 4.2 and 4.4 represent the final '"best-fit'' of the
experimental data points, ''transferred' by means of equations [ 10-3] and
[ 10-4] to the nominal isotherms shown. This method of presenting the
ho versus Vo data eliminates the scatter due to experimental tempera-
ture variation. Good agreement was obtained with NASA data [ 18] for
liquid nitrogen at 140°R; see figure 4.4. Since the NASA test section
wasg 1.414 times as large as the plastic venturi described herein, negli-

gible scale effects are indicated.

Minimum local wall pressure at incipient cavitation was calcu-
lated to be less than bulkstream vapor pressure by as much as 328 feet
of hydrogen head and 63 feet of nitrogen head. These data are obtained
by subtracting N from h_in tables 4.1 and 4. 2.

Figures 4.3 and 4.5 are presented as a matter of interest, but it
is to be noted that these KiV curves depend entirely on the shape of the
hO versus Vo curves, and that errors in h0 are amplified in KiV (as was
shown earlier). Little variation in the shape of the h0 versus V curves
is required to eliminate the inflection points in the corresponding K,

v

versus Vo curves, The Ki curves indicate the usual trends, i.e., Ki
v v
increases with increasing velocities and decreasing temperatures.

Figure 4.3 shows the isotherms for hydrogen intersecting at an inlet
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velocity of about 140 ft/sec. While this intersection may be tenable, it
could also be attributed to experimental data scatter. Reference to
figure 4.1 indicates little separation between isotherms, and suggests
that K, may be invariant at inlet velocities greater than 140 ft/sec.
Both hydrogen and nitrogen KiV curves exhibit little temperature or

velocity dependence at the higher velocities.
4.3.2 Discussion of Thermodynamic Data

In figures 4.8 to 4. 34, the data points representing cavity pres-
sure measurements have been connected to facilitate comparison with
the data points obtained from the cavity temperature measurements.
The pressure depressions obtained from the cavity temperature mea-
surements are, for the most part, greater than those derived from the
measured cavity pressures. Some of the hydrogen data indicate that
the cavity pressures and temperatures are nearly in equilibrium at
axial positions near the leading and trailing edges of the cavity; this
is particularly true near the leading edge where vaporization occurs.
The nitrogen data are more erratic near the leading edge of the cavity;
it is believed that this is due to the fact that the nitrogen cavities some-
times resemble vapor streams, while the hydrogen cavities always
present a complete annulus of vapor. Therefore, the pressure and
temperature sensing ports are continuously covered with vapor during
a hydrogen experiment, but may be intermittently covered with first
vapor and then liquid in a nitrogen test. The characteristics of the
nitrogen cavities vary with inlet temperatures and velocities as sh(?wn
in figure 4.36. Minimum measured cavity pressure was less than bulk-
stream vapor pressure by as much as 651 feet of hydrogen head and 44
feet of nitrogenhead. These pressure depressions are obtained by

subtracting h

> from hV in tables 4. 6 and 4.7.
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The data given on figures 4.8 to 4. 34 indica.tes'Z that some of the
- cavities were shorter than their nominal (as observed on film) length.
Apparently, the actual length of the cavity and the observed length differ
somewhat, perhaps due to the irregular trailing edges of the cavity.

The cavity length was observed (on film) to be within * one-fourth inch

of the nominal length of all the data reported.

A similarity equation, used to correlate cavitation performance
of various flow devices from fluid-to-fluid, was fitted with numerical
exponents derived from the experimental data of this study. The simi-
larity equation and exponent data for Freon 114 were obtained from the
literature; the numerical exponents fo1; Freon 114 were then compared
in tables 4.8 and 4.9 with those deduced from this experiment, using
liquid hydrogen and liquid nitrogen. The exponents given in tables 4. 8
and 4.9 were obtained from a least-squares fitting technique and a digital
computer. The suitability of the various exponents to the experimental
data of this study is indicated by the standard deviation in these tables.
The data given in tables 4.8 and 4. 9 points up the difference between
theory and experiment. The data given on figures 4.8 to 4.22 were used
to estimate the cavity length (the data were extrapolated to zero pressure-
depression) and little improvement in data fit was realized, see results

in table 4. 8.
5. Summary

5.1 Summary of

Cavitation Inception Experiments

Cavitation inception parameters have been experimentally mea-

sured for liquid hydrogen and liquid nitrogen flowing in a clear plastic

2 - The pressure depression should be zero at the trailing edge of the
cavity.
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venturi. The experimental data points are given in table 4.1 for liquid

hydrogen and table 4. 2 for liquid nitrogen.

Temperature compensated values of inlet head, ho, versus inlet
velocity, VO, are presented on a background of mathematically derived
isotherms; liquid hydrogen data are shown on figures 4.2 and liquid
nitrogen data appear on figure 4.4. The 140°R isotherm constructed
from the liquid nitrogen data is coincident with data furnished by Rug-
geri [18]. The venturi used in that experiment [15] was larger by a
factor of 1.414:1; therefore, negligible scale effects are indicated. The
mathematical technique used to temperature-compensate the experimental

data is outlined in Appendix B of this paper.

Figure 4.1 shows experimental Kiv data points for liquid hydrogen;
these data have not been temperature compensated and show no particular
temperature trends. Temperature compensated values of the conven-
tional cavitation parameter, Kiv’ are also shown on figure 4.3 for liquid
hydrogen and on figure 4.5 for liquid nitrogen: These curves have been
derived from the smooth isotherms on the ho versus Vo plots (figures
4.2 and 4. 4). The data shows that Kiv increases with increasing veloc-
ities and decreases with increasing temperatures. At the high velocities,
the Kiv curves indicate very little temperature or velocity dependence.
The data used to construct figures 4. 3 and 4. 5 are given in tables 4. 4

and 4. 5.

The experiments showed that both liquid hydrogen and liquid
nitrogen can sustain relatively large magnitudes of thermodynamic
metastability; i.e., minimum local wall pressure was calculated to be
considerably less than bulkstream vapor pressure. The magnitude of
metastability for the various experiments is obtained by subtracting K
from hv in tables 4.1 and 4. 2.
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5.2 Summary of

Thermodynamic Depression Experiments

Pressure and temperature profiles were measured within fully
developed cavities of 1.25, 2, and 3. 25 inch nominal lengths in liquid
hydrogen and 3. 25 inch nominal length in liquid nitrogen. The results
of these experiments are given as thermodynamic depressions on figures
4.8 thru 4. 34. In general, the measured pressure and temperature de-
pressions were not in thermodynamic equilibrium; the pressure depres-
sions obtained from the cavity temperature measurements are usually

greater than those derived from the measured cavity pressures. Some

of the hydrogen experiments indicate that the cavity vapor is almost in
thermodynamic equilibrium near the leading and trailing edges of the
cavity; considerable thermodynamic metastability occurs in the mid~
region of the cavity in all of the hydrogen data. This behavior may be
due to lag in the thermal-response of the liquid, to rapidly varying
pressure, as a particle of liquid traverses the test section contour.
The nitrogen thermodynamic data are considerably more erratic than
the data for hydrogen, particularly near the leading edge of the cavity:
This feature of the nitrogen thermodynamic data is attributed to the
porous, non-uniform character of the cavities; while the cavities in
hydrogen were uniformly developed and well defined, the nitrogen
cavities were quite irregular and definition varied considerably with flow

conditions, see figures 4. 35 and 4. 36.

The experimental data of the study were used to fit a similarity
equation with numerical exponents, see tables 4.8 and 4.9. The equa-
tion is used to correlate the cavitation performance of liquid pumps

from fluid to fluid.
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7. Nomenclature

A = test section inlet flow area [= 0. 008063 ftzat 36°R]

B = ratio of vapor to liquid volume associated with the formation
and sustenance of a fixed cavity in a liquid

C = (n=1,2---): constants appearing in equation [10-1] which

are evaluated from best-fit curves through ho vs Vo data

points

c; = (n=1,2): modified values of C_

Cp = pressure coefficient [= (h - h )/(V /Zg )

& = minimum pressure coefficient [— (h h )/(V /Zg )]

Dz = test section inlet diameter

g, = conversion factor 'in Newton's law of motion, given in engi-
neering units as g, = 32. 2 (ft) (pounds rnass)/(secz)(pounds
force)

hn = (n=2,4,5,7 or 9): head corresponding to cavity pressure
measured at 3 particular instrument port in wall of plastic
venturi, ft

hn’ T = (n=2,6, or 8): head corresponding to the saturation pressure

at the cavity temperature measured at a particular instrument

port in wall of plastic venturi, ft

18



<

test section inlet head corresponding to absolute inlet pres-
sure, ft

value of inlet head corresponding to a data point before it is
"transferred' to a new position, ft

value of inlet head corresponding to a data point after it

has been ''transferred' to a new position, ft

head corresponding to saturation or vapor pressure at the
test section inlet temperature, ft |

head corresponding to absolute pressure measured at wall
of plastic venturi at distance x, downstream of the minimum
pressure point, ft

head corresponding to the minimum absolute pressure on
quarter-round contour of plastic venturi, computed from
expression for ép' it

incipient cavitation parameter [= (h0 - hv)/(Voz/ch)]

fully developed cavitation parameter [= (h0 - hv)/(VOZ/ZgC )]
mass flow rate, e.g., (pounds mass)/sec

(n=2,4,5,7, or 9): absolute cavity pressure measured at a
particular station or instrument port in wall of plastic venturi
(n=2,6, or 8): saturation pressure corresponding to the
measured cavity temperature at a particular station or in-
strument port in wall of plastic venturi

test section absolute inlet pressure

saturation or vapor pressure at test section inlet temperature

Reynolds number, based on test section inlet diameter

thickness of vapor-filled cavity

(n=2,6, or 8): measured cavity temperature at a particular
station or instrument port in wall of plastic venturi
bulkstream temperature in degrees Rankine, of liquid entering

the test section
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Greek

(04 =
Subscripts

ref =

Superscripts

m =
n =

p =

the inlet temperature from which a data point is to be ''trans-
ferred"

the inlet temperature to which a data point is being ''trans-
ferred"

the nominal temperature chosenfor construction of a ''base"
isotherm due to the availability of sufficient ho vs Vo data

at or near that temperature

a nominal isotherm on a ho vs Vo plot

a nominal isotherm, different from T(; , On a ho vs V0 plot
velocity of test liquid at inlet to test section, ft/sec

distance measured from minimum pressure point on quarter-

round contour along axis of plastic venturi

thermal diffusivity of liquid

reference test, or set of test conditions, to which a compu-
tation is being referenced when attempting to correlate cavi-
tation performance via the similarity equation [4.2-1]

denotes derivation from theory

exponent on thermal diffusivity ratio in equation [4.2-2]
exponent on cavity length ratio in equation [4.2-2]

exponent on test section inlet velocity ratio in equation [4.2-2]
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9. Appendix A---Acoustic Detector

A detailed drawing of the acoustic transducer is given on figure

9.1 and a schematic of the instrument hook-up is given on figure 9. 2.

The transducer consists of a barium -titanate piezoelectric crystal
sandwiched between the body of the transducer and a machine screw,
figure 9.1. The mechanical coupling or initial compression level in the
crystal could be varied by means of the machine screw. Thus, the
sensitivity of the crystal to mechanical vibration could be adjusted some-
what. Electrical leads were attached to the adjustment screw and to the
body of the transducer. Coaxial electrical wire was used to connect the
transducer to a cathode-follower-amplifier, see figure 9.2. The signal
was then filtered through a variable band-pass filter and displayed on an
oscilloscope. The band-pass filter was set to admit signal frequencies of

3 to 200 kHz for most tests.

The acoustic transducer was screw-mounted in the downstream
flange of the plastic venturi via pipe threads. Most of the system vibration
and noise appeared to be of low frequency and was easily eliminated with

the band-pass filter.

Cavitation was readily discernible on the oscilloscope and was

characterized by large-amplitude, high-frequency signals.
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10. Appendix B---Method Used to
Compensate the Experimental Inception Data for

Temperature Deviation about the Nominal Isotherms

(1) It was assumed that a change in inlet temperature, dTo’ will
produce a change in inlet head, dho, along a constant velocity path, which
will be a function of the velocity and temperature only; itis also assumed
that this function may be approximated by a few terms of a polynomial.
Justification of these assumptions is evidenced by the good results which
were obtained for both hydrogen and nitrogen (see figures 4.2 and 4. 4)

by using the following equation:

2 2
dho = [ClTo + CZTo + C3VO + C4V0 + C5] dTo. [10-1]
Holding V constant and integrating from h toh and from T to
o o,1 o, 2 o, 1
T there results:
o,2
' ' 3 3 ¢ 2 S\
[ho,z B ho,lJV - c:1 [(TO,Z) - (To, 1) 1+ CZ [(To,Z) - (To, 1) ]
o
2
+(T0’2 - To’l)(C:&Vo +C4Vo +C5), [10-2]

where the subscript ''1'" refers to the position of a data point before it is

transferred to a new position identified by the subscript ''2'.,

For each of the following steps (two through seven) there is a

corresponding graphical illustration on Figure 10. 1.

(2) h0 vs Vo experimental data were plotted, a separate graph
being used for each test fluid. The data points were identified with their
individual temperatures so that ''best-fit" curves could be drawn through
each gréup of data points having a common nominal temperature. A

nominal temperature is defined as that temperature which is selected to
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represent a specific group of data points having little temperature variatior.
These first-approximation isotherms are shown as dashed lines on step

two of figure 10.1.

One of the nominal isotherms is chosen, on the basis of availability
of sufficient experimental ho vs VO data at or near that temperature, as a
reference or ''base' isotherm for succeeding computations. This isotherm
is designated To,B in figure 10. 1 while the other isotherms are designated
To' and TO".

(3) The constants in equation [10-2] are evaluated by selecting
pairs of values of ho and T0 from the nominal isotherms at identical
velocities as follows: on figure 10.1 the tail of each arrow indicates a
value of ho’ 1 and To, 1 while the arrow head points to ho, > and To, 2" The
coordinate points from each arrow are then used in equation | 10-2]. Note
that each arrow provides one equation, hence five arrows are needed to
evaluate the constants in [10-2]. The arrows always follow a constant
velocity path and must be strategically placed in order for the five equa-
tions to be independent. The actual data points are not shown since they
are not used in this step. The equation derived from this step will ''transfer"

data from one temperature to another within the confines of the bounding

isotherms.

(4) In step four of the illustration, arrows are used to indicate the
"transferral'' of experimental data points to a new location near the base

isotherm. h and To are known from the experimental data, while

o, 1 , 1

To, , is simply the base nominal temperature, To, B’ values of ho, , can

then be determined, by using equation [10-2], and plotted near the base
temperature, To B’ Note that the data transfer always follows a constant

H

velocity path.
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(5) A new '"best fit' isotherm can then be drawn through all of the
h"transferred" data points at To,B' This new curve is shown as a solid line
in figure 10, 1; the first approximation isotherms, drawn as dashed lines,
are no longer needed and are omitted in the illustration of this step. The

curve obtained from this step represents an improved reference isotherm.

(6) The new reference isotherm and equation [ 10-2] may now be
used to reconstruct the other nominal isotherms. To' and To" may be
reconstructed by using equation [ 10=2] and ho 1 values from the new base

2

isotherm. Note that T now becomes T and T 'and T " take their
o,B o, 1 o o

respective turns as T Values of h0 are then computed in order to

o, 2’ , 2
plot the two new isotherms shown in the illustration of this step on figure

10.1.

(7) The original experimental data points wete then transferred
to their nearest nominal temperature by means of equation [10-2]. Those
points having a nominal temperature of To, B were relocated in their final
position in step four. This process brings the data points near their re-
spective isotherms, as shown by the arrows in the illustration of step

seven. Note that ho > is again the only unknown in equation [10-2].

(8) The agreement between the new nominal isotherms and the
transferred experimental data points was then observed: If the fit was
not satisfactory, ''best-fit' curves were drawn through the 'transferred"
data points and the entire computational procedure-~-steps (3) through
(7) --- was repeated. Several iterations were necessary to obtain suitable
mathematical expressions for liquid hydrogen and liquid nitrogen: tables
4.3, 4.4, and 4.5 as well as figures 4,2 and 4.4 were prepared by using

the following equations.

27



Hydrogen:

2 2
[ho,z-holeV ~ 5.86[(T0’2) —(TO,]-)]

O

+(T_,-T

0.41 V_ - 400.35). 10-3
0.2~ To, 1! o ) [ ]

Nitrogen:

3
h -h ~ 0.000835 [(T_ ) -(T )3]
0,2 O,].V 0:2 0,1
O

2 2
-0.2729 [(T_ ;)7 - (T, ) ] +30.152 (T , - T ). [10-4]

It should be noted that some of the terms in equation [10-2] become
negligible and consequently are not included in [10-3] and [10-4]. Itis

observed that equation [ 10-3] for hydrogen is velocity dependent, while

equation [ 10-4] for nitrogen is not. It is not recommended that equations

[10-3] and [10-4] be used outside the general area of the data points

given.
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0.014 in. dia. '

///3"3’,1?,‘“' i/

VENTURI
Thermocouple Junction

.

(.1): Detail of thermocouple
instrument port

Digitatl
Voltmeter

I L
| =
Thermocouple i

T
|
|
I
signal leads | |
|
\::*: Shields are etectrically
N | isolated from each
|
1
|
i

1
: other at this point.
t

1 444

firted
(,?’ Vacuum Jacket
! Flow Line

(———=)
Q° —=0

T

(.2): Schematic of thermocouple
recording circuit

Figure 2.6 Installation and wiring details of thermocouples used
to measure cavity temperatures
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Figure 4.2 Effect of Test Section Inlet Velocity and Liquid Temperature on
Required Inlet Head for Cavitation Inception in Liquid Hydrogen
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Figure 4.4 Effect of Test Section Inlet Velocity and Liquid Temperature on
Required Inlet Head for Cavitation Inception in Liquid Nitrogen.
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Figure 4.6 Photograph Showing
Typical Cavitation
Inception in Liquid
Hydrogen

Figure 4.7 Photograph Showing
Typical Cavitation
Inception in Liquid
Nitrogen

41

[B- 70409 ]




. Cavity pressure depression, psi
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Run No. 066 '--- Liquid Hydrogen

Nominal cavity length 1-1/4 in, 2 in. 3-1/4 in.

P -P o a o
v n
Pv_ Pn,T d A s
T (°R) 36.91 37.09  37.11
O
V (ft/sec) 151.4 152.9 152.75
o]
K . 1.85 1.74 1.70
v

Axial distance from minimum pressure location, x, inches

Figure 4.8 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 067 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2in. 3-1/4 in.

P-P (o] a 0
v n
P - Pn’ - ) A .
T _(°R) 38.66 38.74 38.84
Vo(ft/sec) 128.7 127.1 130.5
K 1.34 1.32 1.18

Axial distance from minimum pressure location, x, inches

Figure 4.9 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 068 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in.

P -P_ (o} a o

P-P ot ° A [
T (°R) 40.59 40.62 41,04
Vo(ft/sec) 139.7 144.1  144.8
K 1.39 1.19 1. 02

Axial distance from minimum pressure location, x, inches

Figure 4.10 Pressure and temperature depressions

within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 069 --- Liquid Hydrogen '
Nominal cavity length 1-1/4 in. 2in. 3-1/4 in.

P~ P o A =
P,- Pn’ T o 'y .
T (°R) 37.53  37.66 37.54
Vo(ft/sec) 196.8 199.4 204.0
K 2.0 1.95 2.17
v

Axial distance from minimum pressure location, x, inches

Figure 4.11 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 070 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4in.
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P - Pn, - o A ]
T (°R) 38.62 38.64  38.43
Vo(ft/sec) 195.6 197.4 195,8
K 1.89 1.88 1.90

Axial distance from minimum pressure location, x, inches

Figure 4. 12 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi

-4

-2

20

™~ ol

N

\\\

e

Run No. 071 --- Liquid Hydrogen

Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in.
P -P o a a
v n
P - Pn’ T ® A (]
T_(°R) 40.79 40.70 40,68
Vo(ft/sec) 190.4 189.4 189.7
K 1. 61 1.59 1.52

Axial distance from minimum pressure location, x, inches

Figure 4.13 Pressure and temperature depressions

within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 073 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in, 2 in. 3-1/4 in.

P -P (o] A o
v n
P,- Pn’ T ) A [ ]
To(°R) 37.65 37.58  37.53
Vo(ft/sec) 196.2 197.2 199.2
K 1.98 1.97 1.96

Axial distance from minimum pressure location, x, inches

Figure 4. 14 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 075 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in.
PV- Pn o a 2]
Pv- Pn, T - i A e
To("R) 40.86  40.7 40. 97
Vo(ft/sec) 202.9 202.8 204.7
Kv 1. 64 1.68 1.60

Figure 4. 15

Axial distance from minimum pressure location, x, inches

within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 076 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in.

P-P (o) A (]
v n
P - Pn’ T o A ]
TO("R) 38.54 38.54 38.93
Vo(ft/sec) 197.6 ° 198.4 201.1
K 1.93 1.90 1.84
v .

Axial distance from minimum pressure location, x, inches

Figure 4.16 Pressure and temperature depressions
within cavity in liquid hydrogen.

50



Cavity pressure depression, psi
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Run No. 078 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in.

P-P o a 0
A\’ n
PV- Pn. T . ‘ .
T_(°R) 38,84 38.79 39.74
Vo(ft/sec) 139.2  141.2 143.8
K ' 1.51 1.45 1.08

Axial distance from minimum pressure location, x, inches

Figure 4.17 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 079 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in.  3-1/4 in.
P-P o A o
v n
Pv- Pn, T g A .
TO(°R) 37.10 36.79 37.22
Vo(ft/sec) 155.4 155.0 153.9
K 1.81 1.83 1. 67

Axial distance from minimum pressure location, x, inches

Figure 4.18 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 080 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in.

P-P o a o

P, - Pn, T ® A [
T (°R) 40.82 40.88 40,97
Vo(ft/sec) 147.4 151.6 153.2
K 1.36 1.18 1.11

Axial distance from minimum pressure location, x, inches

Figure 4. 19 Pressure and temperature depressions
within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 081 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in
P -P o A o
v n
P-P . e 'y | .
T (°R) 40.70 40.81 40.79
(o]
Vo(ft/sec) 112.8 116.4 117.8
K 1.33 .94 .79
| |

Axial distance from minimum pressure location, x, inches

Figure 4.20 ©Pressure and temperature depressions

within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 082 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in. 2 in. 3-1/4 in,
P -P o A a
v ' n
PV- Pn, T ® A a
To(°R) 36.50 36.50 36.56
Vo(ft/sec) 111.0 113.1 116.1
K 1.46  1.40  1.37

Axial distance from minimum pressure location, x, inches

Figure 4.21 Pressure and temperature depressions

within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 091 --- Liquid Hydrogen
Nominal cavity length 1-1/4 in, 2 in. 3-1/4 in.
P-P (o} a o]
v n
P - Pn' T ® 'y ]
T (°R) 42,48 42.62 42.70
Vo(ft/sec) 175.7 178.8 180.3
K, 1.51 1.26 1.36

Axial distance from minimum pressure location, x, inches

Figure 4.22 Pressure and temperature depressions

within cavity in liquid hydrogen.
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Cavity pressure depression, psi
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Run No. 095 --- Liquid Nitrogen
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Pv- Pn, T o
T°(°R) 140.1
Vo(ft/sec) 35.22
K 1.86
v

Nominal cavity length = 3-1/4 in,

Axial distance from minimum pressure location, x, inches

Figure 4. 23 Pressure and temperature depxessions

within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Run No. 096 --- Liquid Nitrogen
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v ' n
Pv- Pn, T o
To(°R) 139.8
Vo(ft/sec) 50. 07
K 1.97
v

Nominal cavity length = 3-1/4 in.

Axial distance from minimum pressure location, x, inches

Figure 4.24 Pressure and temperature depressions

within cavity in liquid nitrogen.
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Cavity pressure depression, psi

0 | 2
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| l | | | | I |
Run No. 100 --- Liquid Nitrogen | |
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v n / ‘
1::.v" Pn, T d ‘
T (°R) 150. 7 / ‘
Vo(ft/ sec) 45, 84
) K 1.53
\'2

|

Axial distance from minimum pressure location,

Figure 4.26 Pressure and temperature depressions

within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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-/ K 0.97 i
v
8- / —_.]-Nominal cavity length = 3-1/4 ill’l. —
° | .

Axial distance from minimum pressure location, x, inches

Figure 4. 25

Pressure and temperature depressions
within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Figure 4.27 Pressure and temperature depressions

within cavity in liquid nitrogen.
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Cavity pressure depression, psi

Run No. 105 --- Liquid Nitrogen
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To(°R) 160.7
Vo(ft/sec) 73. 14
K 1.82
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;
'
I
j

Axial distance from minimum pressure location, x, inches

Figure 4.28 Pressure and temperature depressions

within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Run No. 107 --~ Liquid Nitrogen
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—
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T (°R) 150. 5 /
Vo(ft/sec) 73.13
K 2. 04
v
-~ Nominal cavity length = 3-1/4 in. 7/

/

/

Axial distance from minimum pressure location, x, inches

Figure 4.29 Pressure and temperature depressions
within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Nominal cavity length = 3-1/4 in.

Axial distance from minimum pressure location, x, inches

Figure 4.30 Pressure and temperature depressions
within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Figure 4.31 Pressure and temperature depressions
within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Figure 4.32 Pressure and temperature depressions

within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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Figure 4.33 Pressure and temperature depressions
within cavity in liquid nitrogen.
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Cavity pressure depression, psi
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 Figure 4. 34

Pressure and temperature depressions
within cavity in liquid nitrogen.
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(- 2): Nominal cavity length, 1-1/4

inch; V_=111 ft/sec, T =
o o

(. 1): Typical incipient cavitation. 36.50°R, P_= 23,3 psia,
r Note scribe marks used to K ol 46 >

identify nominal cavity length. V. ket

|

;

’

(.3): Nominal cavity length, 2

(.4): Nominal cavity length,

W
inc VO 155 ft/sec, Tox 314 inch; V0= 204.7 £t/

36.79°R, P_= 36.3 psia,

sec, T =40.97°R, PO=

l K = 1.83. ©
v

\

59. 3 psia, KV== 1. 60.

Figure 4.35 Photographs showing typical appearance of
developed cavities in liquid hydrogen.
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(1)

(3):

V,=35.22 ft/sec, T_=140.1°R, (-2): V_=72.89 ft/sec, T = 140.7°R,
P =15.55 psia, K = 1. 86, P =16.20 psia, K = 2,15,
o v (o] v

V = 45,84 ft/sec, T = 150.7°R, (.4): V_=73.13 ft/sec, T =150.5°R,
o o o] o

P = 29.25 psia, K = 1.53. P =28.90 psia, K = 2.04.
o] v

=i as . . K

* —-m i s S e AR~ ™~

(35):

Vv =38.25 ft/sec, T = 160, 7°R,

(.6): v =74.14 ft/sec, T = 160.7°R,

= Uictpen s /P _=48.95 psia, K = 1.82.

Figure 4. 36 Photographs showing effects of velocity and
temperature on the appearance of developed
cavities in liquid nitrogen; nominal cavity
length, 3-1/4 inch.
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Figure 9.1 Acoustic Transducer for Detection of Cavitation Inception.
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Figure 9.2 Block Diagram of Signal Conditioning Instruments Used with
Acoustic Cavitation Detection Device.
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Figure 10.1 Illustration of Method Used to Construct Nominal
Isotherms from Experimental Data.
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Table 4.8 Results of Computer Solutions of Equation [4.2-2]
Using Hydrogen Thermodynamic Data.

lefgzlfl};ed ™ n P s.p.7 =»\/(1/N)Z(B - Bt)2
Nominall . 5% . 5% . 5% 2.223
Nominal . 5% -.278 . 5% . 583
Nominal BEk - 16%k 57 . 628
Nominal . B¥ex -. 16** . 85%% . 665
Nominal . Bk -.326 . 85%% . 568
Nominal . 5¥ -.308 . 732 . 562
Nominal -3.52 -. 348 . 554 .379
Estimated® R UL O - L L . 604
Estimated . B -.306 . 85%3% .498
Estimated . 5% -. 288 .71 . 489
Estimated -2.938 -.306 . 54 . 346

1 - Nominal cavity length obtained from movie films.

2 - Cavity length obtained by extrapolation of cavity pressure measure-

ment data.

% - Denotes exponents held constant in computer fit program.

#% - Denotes exponents obtained from reference [13].

T - Standard deviation, where N = number of data points, B, = B ob-

tained from theory [ 13}, and B is computed from equation [4.2-2].

. ) o m X n A%
Equation [ 4.2-2]: B = (B)ref< raef> & I:f) Qv o f)p.
o, Te

L
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Table 4.9 Results of Computer Solutions of Equation [4. 2-2]
Using Nitrogen Thermodynamic Data.

lengct;vl:.?;d m P s.p. ¥ =\[(1/N)Z(B - Bt)"‘
Nomina.l1 . 5% . 5% . 545
Nominal . Sk . 85%x . 671
Nominal . . 5% .384 . 533
Nominal -1.22 . 492 .498
Nominal 0% . 85%% . 644
Nominal 0 414 . 517

1 - Nominal cavity length obtained from movie films. The exponent
n does not appear in these data, as only one cavity length (3-1/4
inches) was used in the nitrogen tests.

* - Denotes exponents held constant in computer fit program.

*% - Denotes exponents obtained from reference [13].

T - Standard deviation, where N = number of data points, B, = B ob-
tained from theory [13], and B is computed from equation [ 4. 2-2].
o m x n v P
. . - _ref ( refN/ o %
Equation [4.2-2]: B = (B) (5 ) = )(Vo ref).
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