

NASA CR-72286 NBS REPORT 9705

FINAL REPORT

THERMODYNAMIC DEPRESSIONS WITHIN CAVITIES AND CAVITATION INCEPTION IN LIQUID HYDROGEN AND LIQUID NITROGEN

by J. Hord, D. K. Edmonds, and D. R. Millhiser

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT No.C-35560-A March, 1968

> Technical Management NASA Lewis Research Center Cleveland, Ohio Liquid Rocket Technology Branch Werner R. Britsch

NBS - U.S. Department of Commerce, Boulder, Colorado

FOREWORD

This report was prepared by the National Bureau of Standards, Institute for Basic Standards, United States Department of Commerce under Contract C-35560-A. The contract was administered by the Lewis Research Center of the National Aeronautics and Space Administration, Cleveland, Ohio. The work summarized in this report was performed during the period 15 July 1964 to 15 December 1967. The NASA project manager for the Contract was Mr. Werner R. Britsch. Mess'rs. R. S. Ruggeri, T. F. Gelder, and R. D. Moore of the Fluid Systems Components Division at NASA Lewis Research Center---under the direction of M. J. Hartmann---served as research consultants and technical advisers during the course of this program.

TABLE OF CONTENTS

.

	•					-			-					Page
FOI	REWO	RD.	•	•	•	•	•	•	•	•	•	•	•	ii
LIS	T OF	ILLUST	RATIO	NS	•	•	•	•	•	•	•	•	•	iv
LIS	T OF	TABLES	5.	•	•	•	•	•	•	•	•	•		vii
ABS	STRAC	ст.	•	•	•	•	•	•	•	•	•	•	•	ix
1.	Intro	duction	•	•	•	•	•	÷	•	•	•	•	•	1
2.	Appa	ratus .	٠	•	•	•	•	•	•	•	•	•	•	3
	2.1	Test Se	ction	•	•	•	•	•	•	•	•	•	•	3
	2.2	Instrun	n entati	on	•	•	•	•	•	•	•		•	4
	2.3	Visu a l	and Ph	otog	raph	ic A	ids	•	•	•	•	•	•	6
3.	Test	Procedu	ire.	•	•	•	•	•	•	•	•	•		7
ŧ .	Data	An alys i	s and I	Discu	iss io	n	•	•	•	•	•	•		8
	4.1	Incepti	on D ata	ι.	•	•	•		•	•	•	•	•	8
		4.1.1	Incept	ion I	Data	Ana	lysis		•	•	•	•	•	8
	4.2	Therm	odyn a n	n ic E	ata	•	•	•				•	•	10
		4.2.1	Therm	nody	n a mi	c Da	ta A	n a ly	sis	•	•	•	•	10
	4.3	Discus	sion of	Data	a.	•	•	•	•		•	•	•	13
		4.3.1	Discus	sior	n of I	ncer	otion	Data	ι.		•	•		13
		4.3.2	Discus	ssior	n of 7	[h e r	mody	yn a m	n ic D	ata	•	•		14
5.	Sumr	n ary .	• •	•	•	•	•		•	•	•	•	•	15
	5.1	Summa	ry of C	Cavit	atior	n Inc	eptic	on Ez	cperi	m en	ts	•	•	15
	5.2	Summ a	ry of]	Ther	mody	nam	ni c D	epre	ssio	n Ex	peri	n ent	5.	17
6.	Ackn	owledge	ments	•	•	•		•	•	•	•	•	•	18
7.	Nom	enclatur	е.	•	•	•	•	•	•	•	•	•	•	18
3.	Refe	rences	• •	•	•	•		•	•	•	•	•	•	21
9.	Appe	ndix A-	Acou	stic	Dete	ctor	•••	•	•	•	•	•	•	24
10.	Appe	ndix B-	Meth	od U	sed	to C	ompe	ensat	e the	e Exp	perir	nenta	1	
		Incepti	on D a ta	a for	Ten	nper	atur	e De	viati	on a ł	oout	the		
		Nomina	al Isoth	erm	s.	•	•	•	•	•	•		•	25
Dis	tributi	ion List		•	•		•		•				•	86

_ _

LIST OF ILLUSTRATIONS

		F	age ·
Figure 2.1	Schematic of Cavitation Flow Apparatus	•	29
Figure 2.2	Photograph of Plastic Venturi Test Section		•
	Installed in System. Note CounterUsed to		
	Correlate Flow Data with Film Event	•	30
Figure 2.3	Sketch of Plastic Venturi Section Showing		
	Dimensions and Location of Pressure and		
	Temperature Instrumentation	•	31
Figure 2.4	Quarter-Round Contour of Convergent Region of		
	Plastic Test Section	•	32
Figure 2.5	Pressure Distribution Through Test Section for		
	Non-Cavitating Flow	•	33
Figure 2.6	Installation and Wiring Details of Thermocouples		
	Used to Measure Cavity Temperature	•	34
Figure 2.7	Schematic Diagram of Thermocouple Measuring		
	Circuit, Showing Physical Location and Electrica	1	
	Connections for the Thermocouples	•	35
Figure 4.1	Cavitation Parameter for Liquid Hydrogen as		
	Function of Test Section Inlet Velocity	•	36
Figure 4.2	Effect of Test Section Inlet Velocity and Liquid		
	Temperature on Required Inlet Head for Cavitation	n	
	Inception in Liquid Hydrogen	•	37
Figure 4.3	Cavitation Parameter for Liquid Hydrogen as a		
	Function of Test Section Inlet Velocity and Liquid	l	
	Temperature	•	38
Figure 4.4	Effect of Test Section Inlet Velocity and Liquid T	em	-
	perature on Required Inlet Head for Cavitation		
	Inception in Liquid Nitrogen.	•	39

		I	Page
Figure 4.5	Cavitation Parameter for Liquid Nitrogen as		
	Function of Test Section Inlet Velocity and Liquid		
	Temperature	•	40
Figure 4.6	Photograph Showing Typical Cavitation Inception		
	in Liquid Hydrogen	•	41
Figure 4.7	Photograph Showing Typical Cavitation Inception		
	in Liquid Nitrogen	•	41
Figure 4.8	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	4 2
Figure 4.9	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	43
Figure 4.10	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	44
Figure 4.11	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	45
Figure 4.12	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	46
Figure 4.13	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	47
Figure 4.14	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen		4 8
Figure 4.15	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	49
Figure 4.16	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	50
Figure 4.17	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	51

v

	·	F	a ge
Figure 4.18	Pressure and Temperature Depressions within	•	
	Cavity in Liquid Hydrogen	•	52
Figure 4.19	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	53
Figure 4.20	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	54
Figure 4.21	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	55
Figure 4.22	Pressure and Temperature Depressions within		
	Cavity in Liquid Hydrogen	•	56
Figure 4.23	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen		57
Figure 4.24	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	58
Figure 4.25	Pressure and Temperature Depressions within		
	Cavity in Liquid nitrogen	•	59
Figure 4.26	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	60
Figure 4.27	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	61
Figure 4.28	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	62
Figure 4.29	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	63
Figure 4.30	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	64
Figure 4.31	Pressure and Temperature Depressions within		
	Cavity in Liquid Nitrogen	•	65

		Page
Figure 4.32	2 Pressure and Temperature Depressions within	•
	Cavity in Liquid Nitrogen	66
Figure 4.33	3 Pressure and Temperature Depressions within	
	Cavity in Liquid Nitrogen	67
Figure 4.34	Pressure and Temperature Depressions within	
	Cavity in Liquid Nitrogen	68
Figure 4.35	5 Photographs Showing Typical Appearance of	
	Developed Cavities in Liquid Hydrogen	69
Figure 4.36	6 Photographs Showing Effects of Velocity and Tem-	
	perature on the Appearance of Developed Cavities	
	in Liquid Nitrogen; Nominal Cavity Length,	
	3-1/4 inch	70
Figure 9.1	Acoustic Transducer for Detection of Cavitation	
	Inception	71
Figure 9.2	Block Diagram of Signal Conditioning Instruments	
	Used with Acoustic Cavitation Detection Device.	71
Figure 10.1	l Illustration of Method Used to Construct Nominal	
	Isotherms from Experimental Data	72
	LIST OF TABLES	
Table 4.1	Cavitation Inception Data for Liquid Hydrogen	73
Table 4.2	Cavitation Inception Data for Liquid Nitrogen	74
Table 4.3	Experimental Data Points Which Have Been Tem-	
	perature Compensated by Means of Equation [10-3]	
	for Hydrogen and Equation [10-4] for Nitrogen	75
Table 4.4	Calculated Data Used to Construct Nominal Isotherms	
	for Liquid Hydrogen Inception	76
Table 4.5	Calculated Data Used to Construct Nominal Isotherms	
	for Liquid Nitrogen Inception.	77

vii

		Ρ	age
T a ble 4.6	Experimental Thermodynamic Data for Liquid		
	Hydrogen	•	78
Table 4.7	Experimental Thermodynamic Data for Liquid		
	Nitrogen	•	82
Table 4.8	Results of Computer Solutions of Equation [4.2-2]		
	Using Hydrogen Thermodynamic Data	•	84
T a ble 4.9	Results of Computer Solutions of Equation [4.2-2]		
	Using Nitrogen Thermodynamic Data	•	85

THERMODYNAMIC DEPRESSIONS WITHIN CAVITIES AND CAVITATION INCEPTION IN LIQUID HYDROGEN AND LIQUID NITROGEN

J. Hord, D. K. Edmonds, and D. R. Millhiser

ABSTRACT

Cavitation characteristics of liquid hydrogen and liquid nitrogen in a transparent plastic venturi have been determined. The experimental data are presented in tabular and graphical form. Conventional cavitationinception-parameter and head-velocity curves are given over the range of experimental temperatures (36.5 to 41°R for hydrogen and 140 to 170°R for nitrogen) and inlet velocities (70 to 185 ft/sec for hydrogen and 20 to 70 ft/sec for nitrogen). Minimum local wall pressure at incipience was calculated¹ to be less than bulkstream vapor pressure by as much as 328 feet of hydrogen head and 63 feet of nitrogen head in some inception tests.

Thermodynamic data, consisting of pressure and temperature measurements within fully developed cavities, are also given. Minimum <u>measured</u>¹ cavity pressure was less than bulkstream vapor pressure by as much as 651 feet of hydrogen head and 44 feet of nitrogen head; measured temperatures and pressures within the cavities were generally not in thermodynamic equilibrium. At constant bulkstream temperature, cavity pressure depressions increased with increasing velocities and cavity length. For fixed velocities, cavity pressure depressions increased with increasing fluid temperature and cavity length. Existing theory is used to obtain equations which correlate the experimental data for developed cavitation in liquid hydrogen and liquid nitrogen.

ix

Variations in test conditions preclude direct comparison of minimum calculated (at incipience) and minimum measured pressure depressions.

1. Introduction

Cavitation is usually defined as the formation, caused by a reduction in pressure, of a vapor phase within a flowing liquid or at the interface between a liquid and a solid. Since the formation and collapse of vapor cavities alters flow patterns, cavitation may reduce the efficiency of pumping machinery [1], and reduce the precision of flow measuring devices. Collapse of these vapor cavities can also cause serious erosion damage [2] to fluid-handling equipment. While the noncavitating performance of hydraulic equipment may be predicted from established similarity laws, cavitating performance can seldom be predicted from fluid-to-fluid. The effects of fluid properties on cavitation performance are well recognized [3-12] and require more understanding to develop improved similarity relations [13] for equipment design.

NASA has undertaken a program [1] to determine various cavitation characteristics and the thermodynamic behavior of different fluids in an effort to obtain improved design criteria to aid in the prediction of cavitating pump performance. The experimental study described herein was conducted in support of this program.

Liquid hydrogen and liquid nitrogen were chosen as test fluids for this study for the following reasons: (1) the ultimate goal of this program is to acquire sufficient knowledge to permit intelligent design of pumps for near-boiling liquids and (2) predictive analyses indicated [1] that the physical properties of hydrogen and nitrogen make them particularly desirable test fluids. The objective of this study was to determine the flow and thermodynamic conditions required to induce incipient and developed cavitation on the walls of a transparent plastic venturi using liquid hydrogen and liquid nitrogen. The shape of the venturi was chosen to duplicate the test section used by NASA [13-17]. In the inception studies, the test section inlet velocity was varied from 70 to 185 ft/sec with hydrogen and from 20 to 70 ft/sec with nitrogen. Inlet temperatures were varied from 36.5 to 41°R with hydrogen and from 140 to 170°R with nitrogen, in order to determine the effects of temperature upon cavitation inception. Both incipient and desinent cavitation data were acquired with no noticeable hysteresis; i. e., the flow conditions corresponding to vapor inception are identical whether the data point is approached from non-cavitating or fully developed cavitating flow. In this paper, incipience refers to the appearance of barely visible cavities, whether they be due to incipient or desinent cavitation.

Pressure and temperature profiles within fully developed cavities were measured and are referred to herein as thermodynamic data. Nominal cavity lengths studied were 1.25, 2, and 3.25 inches with liquid hydrogen and 3.25 inches with liquid nitrogen. Venturi inlet velocities were varied from 110 to 200 ft/sec in hydrogen and from 35 to 75 ft/sec in nitrogen. Inlet temperatures ranged from 36.5 to 42.5°R in hydrogen and from 140 to 160°R in nitrogen. Since the bulkstream vapor pressure exceeds the measured cavity pressure and the saturation pressure corresponding to the measured cavity temperature, the measured pressure and temperature depressions within the cavity are appropriately called "thermodynamic depressions." A similarity equation has been suggested [13] for correlating cavitation data for a particular test item from fluid to fluid; this

correlation is also useful in extending the velocity and temperature range of data for any given fluid. The experimental data from this study have been used to evaluate the exponents on various terms in this correlating equation.

All data reported here are intended to supplement that given in references [13-17] for a geometrically similar, but 1.414 times as large, test section.

2. Apparatus

The facility used for this study consisted of a blow-down system with the test section located between the supply and receiver dewars; see figure 2.1. Dewars and piping were vacuum shielded to minimize heat transfer to the test fluid. Flow control was attained by regulating the supply and receiver dewar pressures. Pressure and volume capacities of the supply and receiver vessels are indicated on figure 2.1. The receiver dewar pressure control valving limited the inlet velocity, V_o , to around 200 ft/sec in hydrogen, while the supply dewar pressure rating limited the inlet velocity to about 70 ft/sec in nitrogen.

Valves located on each side of the test section permit flow stoppage in the event of venturi failure while testing with liquid hydrogen. A plenum chamber was installed upstream of the test section to assure uniform non-cavitating flow at the test section inlet. The supply dewar was equipped with a 5 kW heater which was used to heat the test fluid.

2.1 Test Section

A photograph of the test section as viewed through one of the windows in the vacuum jacket is shown in figure 2.2. The transparent plastic venturi was flanged into the apparatus using high compression elastomeric "O" rings. Test section details are given in figures 2.3 and 2.4.

Referring to figure 2.3, static pressure tap No. 1 was the only instrument port drilled and used in the liquid hydrogen inception tests. Some liquid nitrogen data were acquired with all of the pressure and temperature sensing ports instrumented, figure 2.2. Since incipient cavitation involves very small cavities at or near the minimum pressure point-see figures 2.4 and 2.5--the presence or absence of the additional sensing ports has no effect on the inception data reported. All of the sensing ports were used during the thermodynamic tests to determine the temperature and pressure depressions within the cavities. Cavity length was determined from scribe marks on the plastic venturi; see figure 2.2. The theoretical and as-built venturi contours are shown on figure 2.4. The test section dimensions were checked by using the plastic venturi as a mold for a dental plaster plug. The plug was then removed and measured. Pressure distribution for non-cavitating flow across the quarterround contour [14, 18] is shown in figure 2.5. This pressure profile has been confirmed using several test fluids [14-16] and data from this study, and applies when $(\text{Re})_{D} \ge 4 \times 10^{5}$.

2.2 Instrumentation

Location of the essential instrumentation is shown on figures 2.1 and 2.3.

Liquid level in the supply dewar was sensed with a ten-point carbon resistor rake. Test fluid temperature in the supply dewar was determined by two platinum resistance thermometers, see figure 2.1. Fluid temperature at the flowmeter and test section inlet were also measured with platinum resistance thermometers. These platinum thermometers were calibrated to provide temperature readings accurate within \pm 0.04°R. The thermometers were powered with a current source which did not vary more than 0.01 percent. Voltage drop across the

thermometers was recorded on a 5 digit electronic voltmeter data acquisition system. The overall accuracy of the platinum thermometer temperature measurement is estimated to be within ±0.09°R. Chromelconstantan thermocouples were used to determine the temperature profile within the cavities during the thermodynamic tests. The reference thermocouple was placed in the plenum chamber beside the platinum thermometer used to determine bulkstream temperature at the test section inlet. The thermocouples had exposed, welded junctions, and were constructed from one mil wire to ensure rapid response. The thermocouple leads extending from the reference to cavity thermocouples were thermally lagged to the cold pipe. The signal leads which penetrated the vacuum barrier were also tempered to the cold pipe to minimize heat transfer to the thermocouples. Details of the thermocouple installation are shown on figures 2.6 and 2.7. The thermocouple circuit was calibrated, over the range of experimental velocities and temperatures, from tests involving non-cavitating flow through the venturi. Accuracy of the cavity temperature measurements is estimated at ± 1 °R for hydrogen and ± 0.4 °R for nitrogen.

System gage and differential pressure measurements were obtained with pressure transducers mounted in a temperature stabilized box near the test section. Differential pressure measurements were used where possible to provide maximum resolution. The pressure transducers were calibrated via laboratory test gages at frequent intervals during the test series. These transducers have a repeatability of better than \pm 0.25 percent and their output was recorded on a continuous trace oscillograph with approximately one percent resolution. The overall accuracy of the pressure measurement, including calibration and read-out errors is estimated to be within \pm 2.0 percent. Bourdon gages were used to monitor the various tests.

Volumetric and mass flow rates were determined via Herschel venturi flow meter designed to ASME Standards [19]. The internal contour of this meter was verified in the same manner as the test venturi. An error analysis of this flow device and associated pressure and temperature measurements indicates an accuracy in mass flow of about one percent.

An electronic pulsing circuit provided a common time base for correlating data between oscillograph, digital voltmeter, and movie film. The data were reduced by first viewing film of the test event. A solenoid-actuated counter, installed adjacent to the test section was energized by the electronic pulser and appears on the film, figure 2.2. Thus, the data are reduced at the desired instant of time by simply matching the number of voltage pulses which have elapsed.

An acoustic cavitation detection device was developed and successfully used to determine cavitation inception. This device was found to be more sensitive than the human eye, i.e., cavitation inception could be detected with the acoustic transducer before it was visible to the unaided eye. Visible incipience is frequently used as the criterion for cavitation inception and is normally reported in the literature since the sensitivity [20-22] of various acoustic detectors can vary appreciably. Although the inception data presented here are based upon visible incipience, a full description of the acoustic transducer is given for reference in Appendix A of this paper.

2.3 Visual and Photographic Aids

Use of a plastic test section, liquid hydrogen, and relatively high pressures precluded direct visual observation; therefore, closedcircuit television was used to observe the tests.

Movies of cavitation tests were taken at approximately 20 frames per second on 16 mm film. The variable speed camera was equipped with a 75 mm lens and synchronized with a high intensity stroboscope, providing a 3 μ sec exposure. The stroboscope was situated directly opposite the camera lens and illuminated the test section through a plastic diffuser mask; this technique provided bright field illumination or a back-lighting effect and excellent contrast between vapor and liquid phases in the test section.

3. Test Procedure

The following procedure refers to figure 2.1. The supply dewar was filled with test liquid and then some of the liquid extracted through valves A and B to cool the test section and piping. Approximately two hours was required to cool the plastic test section without breakage. Cooldown was monitored via platinum resistance thermometers in the plenum chamber. Upon completion of cooldown, the contents of the supply dewar was transferred through the test section into the receiver dewar, and then back into the supply dewar again. This operation cooled the entire flow system in preparation for a test. The test section and connecting piping were kept full of liquid (at near-ambient pressure) during preparatory and calibration periods between tests; therefore, the plastic venturi was generally colder than the test liquid. Next, the liquid in the supply dewar was heated to the desired temperature. Supply and receiver dewars were then pressurized to appropriate levels and flow started by opening valve C. In the case of non-cavitating flow, inception was induced by lowering the receiver dewar pressure and thus increasing the flow velocity until vapor appeared. To obtain desinent cavitation from fully developed cavitating flow, the receiver dewar pressure was increased until the vapor cavity was barely visible. For thermodynamic tests, the receiver dewar pressure was adjusted to obtain the desired

cavity length. Receiver dewar pressure was remotely controlled by means of a pneumatic transmitter, differential controller, and vent valve arrangement, figure 2.1. It was necessary to increase test section back-pressure by means of throttle valve D for some of the liquid nitrogen tests. Flow was terminated by closing valve C. The supply dewar was then vented and the test liquid transferred back into the supply dewar for another test. As previously mentioned, the entire test event was recorded on movie film which was subsequently used to determine incipience, desinence, and desired cavity lengths.

4. Data Analysis and Discussion

4.1 Inception Data

All of the useable experimental inception data are given in tables 4.1 and 4.2. The same data points were mathematically temperature-compensated and presented in table 4.3. Derivation of these compensated data is described in Appendix B of this paper.

The conventional cavitation parameter, K_{iv} , for liquid hydrogen is shown on figure 4.1. Little temperature dependency is evident in this plot of experimental data and prompted the presentation of calculated data given on figures 4.2 and 4.3. The calculated data used in the preparation of figures 4.2 and 4.3 are derived as explained in Appendix B and are presented in table 4.4. The liquid nitrogen data were handled in a similar manner and plotted on figures 4.4 and 4.5 from the data of table 4.5. Photographs of cavitation inception are shown for both test fluids on figures 4.6 and 4.7.

4.1.1 Inception Data Analysis

Computed values of K_{iv} were plotted as a function of V_{o} for both hydrogen and nitrogen. However, inspection of the plots showed

no readily discernible temperature dependence of K_{iv} (see figure 4.1; nitrogen is similar and is not shown).

The temperature dependence of K_{iv} is complicated by the fact that errors in the measured variable h_o are magnified in the calculation of K_{iv} as follows:

$$K_{iv} = 2g_{c} \left[\frac{h_{o} - h_{v}}{V_{o}^{2}} \right]; \qquad [4.1-la]$$

differentiating [4.1-1a] at constant temperature and velocity there results,

$$dK_{iv} = \frac{2g_c}{V_o^2} dh_o$$
. [4.1-lb]

The fractional change in K_{iv} due to a change dh_o is obtained by dividing [4.1-1b] by [4.1-1a],

$$\frac{dK_{iv}}{K_{iv}} = \frac{dh_o}{h_o - h_v} . \qquad [4.1-2]$$

The fractional change in h_0 due to a change in dh_0 is by definition

$$\frac{dh_o}{h_o}$$

The ratio of the fractional change in K_{iv} to the fractional change in h_o is obtained by dividing [4.1-2] by dh_h_h_o,

$$\frac{dK_{iv}/K_{iv}}{dh_{o}/h_{o}} = \frac{h_{o}}{h_{o} - h_{v}} \bullet$$
 [4.1-3]

Therefore any scatter which may occur in measuring h_0 will be amplified by the term $\frac{h_0}{h_0 - h_v}$, which has values as large as six for both hydrogen and nitrogen data given in this report.

Plots were also made of h_0 as a function of V_0 using the experimental data from this study. Both hydrogen and nitrogen data showed a distinct temperature dependence; however, there was sufficient experimental variation about each desired nominal liquid temperature to cause concern in constructing the individual isotherms. A nominal temperature or nominal isotherm is defined as that temperature which is selected to represent a specific group of data points with little temperature variation.

A technique was devised to evaluate the effect of temperature on the data and is detailed in Appendix B of this report.

4.2 Thermodynamic Data

Selected thermodynamic data are given in table 4.6 for liquid hydrogen and table 4.7 for liquid nitrogen. Profiles of pressure depression are given on figures 4.8 to 4.22 for liquid hydrogen and figures 4.23 to 4.34 for liquid nitrogen.

Photographs of fully developed cavities in liquid hydrogen and liquid nitrogen are shown in figures 4.35 and 4.36. Inlet velocity and temperature were observed to have very little effect on the appearance of cavitating hydrogen and a pronounced effect on the appearance of nitrogen cavities.

4.2.1 Thermodynamic Data Analysis

The pressure depression in the cavitated region is determined by subtracting the measured cavity pressure in one case and the saturation pressure associated with the measured cavity temperature in

the other case, from the vapor pressure of the liquid entering the test section.

The calculation of feet of head from psi requires evaluation of the liquid density at the point of measurement. Measured pressures and temperatures at the test section inlet were used to obtain head data for the inception tests; however, the liquid density is not so easily obtained from the thermodynamic data. Figures 4.8 to 4.34 indicate that the measured pressures and temperatures, within the cavities, are generally not in equilibrium. Also, due to the thermal expansivity of liquid hydrogen, the bulkstream temperature changes appreciably as the liquid flows through the venturi. The following methods were used to calculate feet of head from measured cavity pressure by using the saturation density at the measured temperature by using the saturation density at the measured temperature by using the saturation density at the measured temperature. Both values of head are given in tables 4.6 and 4.7 for the two test fluids.

The cavitation parameter for fully developed cavitation, K_v , was calculated and tabulated for each run.

The similarity equation [13] (used for correlation of thermodynamic cavitation data in similar test items) was fitted with exponents for both hydrogen and nitrogen, using data from this experiment. The purpose [1] of this equation is to predict the cavitating performance of a test item from fluid-to-fluid and from one temperature to another when limited data from a single fluid are available. The similarity equation in its basic form is given [13] as

$$B = (B)_{ref} \left[\left(\frac{\alpha ref}{\alpha} \right) \left(\frac{x ref}{x} \right) \left(\frac{V_o}{V_{o, ref}} \right) \right]^{0.5} \left(\frac{t_v}{t_{v, ref}} \right); \qquad [4.2-1]$$

11

the symbols are identified in the nomenclature of this paper. Gelder, et.al. [13] equate the cavity thickness term in [4.2-1] to unity and individually evaluate the exponents on the various terms in [4.2-1] to account for differences in theory and experiment; the modified expression may be written

$$B = (B)_{ref} \left(\frac{\alpha_{ref}}{\alpha}\right)^m \left(\frac{x_{ref}}{x}\right)^n \left(\frac{V_o}{V_o, ref}\right)^p, \qquad [4.2-2]$$

where the exponents m, n, and p are evaluated from the experimental data and theoretical data [13] for B---see following discussion. Any single experiment may be chosen to provide the reference data in this equation. In this study the exponents were obtained from a least squares fitting technique and a digital computer; the results of the computer program are given in tables 4.8 and 4.9 for liquid hydrogen and liquid nitrogen, respectively. The exponents obtained by Gelder, et al., [13] from Freon 114 data are included in these tables for comparison. In equation [4.2-2] the physical properties are evaluated at P_0 and T_0 and B_{ref} is obtained from theory [13] using $(P_v - P_2)_{ref}$ and T choosing values for m, n, and p, the B factor may be computed from [4.2-2]. To evaluate the standard deviation in tables 4.8 and 4.9, B_{+} for each data point is obtained from theory in the same manner as B ref. The standard deviation in B factor is minimized in the computer program when one or more of the exponents is selected by the computer; the absolute minimum standard deviation is obtained when all three exponents are selected by the computer. The standard deviation is simply computed in those cases where the exponents are not selected by the computer.

4.3 Discussion of Data

4.3.1 Discussion of Inception Data

It was pointed out earlier that no temperature dependence could be determined from the K_{iv} versus V_{o} plots when the uncompensated experimental data were used, figure 4.1. However, once the nominal h_{o} versus V_{o} isotherms were established by mathematical temperature compensation, the K_{iv} versus V_{o} nominal isotherms may be computed from the basic definition of K_{iv} .

Data on figures 4.2 and 4.4 represent the final "best-fit" of the experimental data points, "transferred" by means of equations [10-3] and [10-4] to the nominal isotherms shown. This method of presenting the h_o versus V_o data eliminates the scatter due to experimental temperature variation. Good agreement was obtained with NASA data [18] for liquid nitrogen at 140°R; see figure 4.4. Since the NASA test section was 1.414 times as large as the plastic venturi described herein, negligible scale effects are indicated.

Minimum local wall pressure at incipient cavitation was calculated to be less than bulkstream vapor pressure by as much as 328 feet of hydrogen head and 63 feet of nitrogen head. These data are obtained by subtracting h from h_{v} in tables 4.1 and 4.2.

Figures 4.3 and 4.5 are presented as a matter of interest, but it is to be noted that these K_{iv} curves depend entirely on the shape of the h_o versus V_o curves, and that errors in h_o are amplified in K_{iv} (as was shown earlier). Little variation in the shape of the h_o versus V_o curves is required to eliminate the inflection points in the corresponding K_{iv} versus V_o curves. The K_i curves indicate the usual trends, i.e., K_{iv} increases with increasing velocities and decreasing temperatures. Figure 4.3 shows the isotherms for hydrogen intersecting at an inlet

velocity of about 140 ft/sec. While this intersection may be tenable, it could also be attributed to experimental data scatter. Reference to figure 4.1 indicates little separation between isotherms, and suggests that K_{iv} may be invariant at inlet velocities greater than 140 ft/sec. Both hydrogen and nitrogen K_{iv} curves exhibit little temperature or velocity dependence at the higher velocities.

4.3.2 Discussion of Thermodynamic Data

In figures 4.8 to 4.34, the data points representing cavity pressure measurements have been connected to facilitate comparison with the data points obtained from the cavity temperature measurements. The pressure depressions obtained from the cavity temperature measurements are, for the most part, greater than those derived from the measured cavity pressures. Some of the hydrogen data indicate that the cavity pressures and temperatures are nearly in equilibrium at axial positions near the leading and trailing edges of the cavity; this is particularly true near the leading edge where vaporization occurs. The nitrogen data are more erratic near the leading edge of the cavity; it is believed that this is due to the fact that the nitrogen cavities sometimes resemble vapor streams, while the hydrogen cavities always present a complete annulus of vapor. Therefore, the pressure and temperature sensing ports are continuously covered with vapor during a hydrogen experiment, but may be intermittently covered with first vapor and then liquid in a nitrogen test. The characteristics of the nitrogen cavities vary with inlet temperatures and velocities as shown in figure 4.36. Minimum measured cavity pressure was less than bulkstream vapor pressure by as much as 651 feet of hydrogen head and 44 feet of nitrogenhead. These pressure depressions are obtained by subtracting h_2 from h_v in tables 4.6 and 4.7.

The data given on figures 4.8 to 4.34 indicates² that some of the cavities were shorter than their nominal (as observed on film) length. Apparently, the actual length of the cavity and the observed length differ somewhat, perhaps due to the irregular trailing edges of the cavity. The cavity length was observed (on film) to be within ± one-fourth inch of the nominal length of all the data reported.

A similarity equation, used to correlate cavitation performance of various flow devices from fluid-to-fluid, was fitted with numerical exponents derived from the experimental data of this study. The similarity equation and exponent data for Freon 114 were obtained from the literature; the numerical exponents for Freon 114 were then compared in tables 4.8 and 4.9 with those deduced from this experiment, using liquid hydrogen and liquid nitrogen. The exponents given in tables 4.8 and 4.9 were obtained from a least-squares fitting technique and a digital computer. The suitability of the various exponents to the experimental data of this study is indicated by the standard deviation in these tables. The data given in tables 4.8 and 4.9 points up the difference between theory and experiment. The data given on figures 4.8 to 4.22 were used to estimate the cavity length (the data were extrapolated to zero pressuredepression) and little improvement in data fit was realized, see results in table 4.8.

5. Summary

5.1 Summary of

Cavitation Inception Experiments

Cavitation inception parameters have been experimentally measured for liquid hydrogen and liquid nitrogen flowing in a clear plastic

^{2 -} The pressure depression should be zero at the trailing edge of the cavity.

venturi. The experimental data points are given in table 4.1 for liquid hydrogen and table 4.2 for liquid nitrogen.

Temperature compensated values of inlet head, h_0 , versus inlet velocity, V_0 , are presented on a background of mathematically derived isotherms; liquid hydrogen data are shown on figures 4.2 and liquid nitrogen data appear on figure 4.4. The 140°R isotherm constructed from the liquid nitrogen data is coincident with data furnished by Ruggeri [18]. The venturi used in that experiment [15] was larger by a factor of 1.414:1; therefore, negligible scale effects are indicated. The mathematical technique used to temperature-compensate the experimental data is outlined in Appendix B of this paper.

Figure 4.1 shows experimental K_{iv} data points for liquid hydrogen; these data have not been temperature compensated and show no particular temperature trends. Temperature compensated values of the conventional cavitation parameter, K_{iv} , are also shown on figure 4.3 for liquid hydrogen and on figure 4.5 for liquid nitrogen: These curves have been derived from the smooth isotherms on the h versus V_o plots (figures 4.2 and 4.4). The data shows that K_{iv} increases with increasing velocities and decreases with increasing temperatures. At the high velocities, the K_{iv} curves indicate very little temperature or velocity dependence. The data used to construct figures 4.3 and 4.5 are given in tables 4.4 and 4.5.

The experiments showed that both liquid hydrogen and liquid nitrogen can sustain relatively large magnitudes of thermodynamic metastability; i. e., minimum local wall pressure was calculated to be considerably less than bulkstream vapor pressure. The magnitude of metastability for the various experiments is obtained by subtracting \hbar from h in tables 4.1 and 4.2.

5.2 Summary of

Thermodynamic Depression Experiments

Pressure and temperature profiles were measured within fully developed cavities of 1.25, 2, and 3.25 inch nominal lengths in liquid hydrogen and 3.25 inch nominal length in liquid nitrogen. The results of these experiments are given as thermodynamic depressions on figures 4.8 thru 4.34. In general, the measured pressure and temperature depressions were not in thermodynamic equilibrium; the pressure depressions obtained from the cavity temperature measurements are usually greater than those derived from the measured cavity pressures. Some of the hydrogen experiments indicate that the cavity vapor is almost in thermodynamic equilibrium near the leading and trailing edges of the cavity; considerable thermodynamic metastability occurs in the midregion of the cavity in all of the hydrogen data. This behavior may be due to lag in the thermal-response of the liquid, to rapidly varying pressure, as a particle of liquid traverses the test section contour. The nitrogen thermodynamic data are considerably more erratic than the data for hydrogen, particularly near the leading edge of the cavity: This feature of the nitrogen thermodynamic data is attributed to the porous, non-uniform character of the cavities; while the cavities in hydrogen were uniformly developed and well defined, the nitrogen cavities were quite irregular and definition varied considerably with flow conditions, see figures 4.35 and 4.36.

The experimental data of the study were used to fit a similarity equation with numerical exponents, see tables 4.8 and 4.9. The equation is used to correlate the cavitation performance of liquid pumps from fluid to fluid.

6. Acknowledgements

A considerable number of people have been associated with this project at various times and their individual efforts are respectfully acknowledged. Mess'rs. Thomas T. Nagamoto, Dale R. Nielsen, Raymond V. Smith, and W. Harry Probert assisted in the early phases of apparatus assembly and experimentation. Mr. Peter Pemberton participated in some design modifications and Ajit Rapial was very helpful in the reduction and analysis of data. The photographic instrumentation and techniques used in this study are attributed to Thomas T. Theotokatos.

7. Nomenclature

A	=	test section inlet flow area [$\equiv 0.008063 \text{ ft}^2$ at 36°R]
в	=	ratio of vapor to liquid volume associated with the formation
		and sustenance of a fixed cavity in a liquid
C_	=	(n = 1, 2): constants appearing in equation [10-1] which
11		are evaluated from best-fit curves through h vs V data
		points
c'	=	(n=1,2): modified values of C
c	=	pressure coefficient $[\equiv (h_x - h_0)/(V_0^2/2g_c)]$
č	=	minimum pressure coefficient $[= (h - h_0)/(V_0^2/2g_c)]$
D	=	test section inlet diameter
g_	=	conversion factor in Newton's law of motion, given in engi-
C		neering units as $g_c = 32.2$ (ft) (pounds mass)/(sec ²)(pounds
		force)
h	=	(n = 2, 4, 5, 7 or 9): head corresponding to cavity pressure
11		measured at a particular instrument port in wall of plastic
		venturi, ft
h _n T	=	(n = 2, 6, or 8): head corresponding to the saturation pressure
11 , 1		at the cavity temperature measured at a particular instrument
		port in wall of plastic venturi ft

- h = test section inlet head corresponding to absolute inlet pressure, ft
- ^ho,1

h_v

 $h_{\mathbf{x}}$

ň

- = value of inlet head corresponding to a data point before it is "transferred" to a new position, ft
- h = value of inlet head corresponding to a data point after it has been "transferred" to a new position, ft
 - = head corresponding to saturation or vapor pressure at the test section inlet temperature, ft
 - = head corresponding to absolute pressure measured at wall of plastic venturi at distance x, downstream of the minimum pressure point, ft
 - = head corresponding to the minimum absolute pressure on quarter-round contour of plastic venturi, computed from expression for \check{C}_{p} , ft
- K = incipient cavitation parameter $[= (h_0 h_v)/(V_0^2/2g_c)]$
- K_v = fully developed cavitation parameter $[= (h_0 h_v)/(V_0^2/2g_c)]$
 - = mass flow rate, e.g., (pounds mass)/sec
- Pn

m

= (n = 2, 4, 5, 7, or 9): absolute cavity pressure measured at a particular station or instrument port in wall of plastic venturi

saturation or vapor pressure at test section inlet temperature

- P_{n,T} = (n=2,6, or 8): saturation pressure corresponding to the measured cavity temperature at a particular station or instrument port in wall of plastic venturi
- P_o P_v (Re)_D

t

 $\mathbf{T}_{\mathbf{n}}$

Т

= Reynolds number, based on test section inlet diameter

= test section absolute inlet pressure

- = thickness of vapor-filled cavity
- = (n = 2, 6, or 8): measured cavity temperature at a particular station or instrument port in wall of plastic venturi
- = bulkstream temperature in degrees Rankine, of liquid entering the test section

- = the inlet temperature from which a data point is to be "trans-T_{0,1} ferred"
- T_{0.2}
- = the inlet temperature to which a data point is being "transferred"
- = the nominal temperature chosen for construction of a "base" T_o, B isotherm due to the availability of sufficient h vs V data at or near that temperature
- = a nominal isotherm on a h vs V plot T'o
- = a nominal isotherm, different from T'_{o} , on a h vs V plot т "
- = velocity of test liquid at inlet to test section, ft/sec V_o
 - = distance measured from minimum pressure point on quarterround contour along axis of plastic venturi

Greek

α

 \mathbf{x}

= thermal diffusivity of liquid

Subscripts

- = reference test, or set of test conditions, to which a compuref tation is being referenced when attempting to correlate cavitation performance via the similarity equation [4.2-1]
- denotes derivation from theory t =:

Superscripts

m	=	exponent on thermal diffusivity ratio in equation [4.2-2]
n	=	exponent on cavity length ratio in equation [4.2-2]
р	=	exponent on test section inlet velocity ratio in equation [4.2-2]

- Pinkel, I., M. J. Hartmann, C. H. Hauser, M. J. Miller, R. S. Ruggeri, and R. F. Soltis, Pump Technology, Chap.VI, p. 81-101, taken from Conference on Selected Technology for the Petroleum Industry, NASA SP-5053 (1966).
- Erosion by Cavitation or Impingement, STP-408, 288 pages (1967), available from ASTM, 1916 Race St., Phila., Pa., 19103.
- Hord, J., R. B. Jacobs, C. C. Robinson, and L. L. Sparks, Nucleation Characteristics of Static Liquid Nitrogen and Liquid Hydrogen, ASME Journ. of Engr. for Power, p. 485-494, (Oct. 1964).
- 4. Brand, R. S., The Motion of a Plane Evaporation Front in a Superheated Liquid, Univ. of Conn., Tech. Rept. No. 2 (April 1963).
- 5. Clark, J. A., The Thermodynamics of Bubbles, Mass. Inst. of Tech., Tech. Rept. No. 7 (Jan. 1956).
- 6. Holl, J. W., and G. F. Wislicenus, Scale Effects on Cavitation, ASME Journ. of Basic Engrg., p. 385-398, (Sept. 1961).
- Huppert, M. C., W. S. King, and L. B. Stripling, Some Cavitation Problems in Rocket Propellant Pumps, Rocketdyne Rept., Canoga Park, Calif.
- Karelin, V. Ya., Cavitation Phenomena in Centrifugal and Axial Pumps, Available from NASA, STIF, Call No. n66-14532 (consists of 128 pages) (1963).
- Spraker, W. A., The Effects of Fluid Properties on Cavitation in Centrifugal Pumps, ASME Journ. of Engr. for Power, Vol. 87, p. 309-318 (July 1965).

- Stepanoff, A. J., Cavitation Properties of Liquids, ASME Journ. of Engrg. for Power, Vol. 86, p. 195-200, (April 1964).
- Wilcox, W. W., P. R. Meng, and R. L. Davis, Performance of an Inducer-Impeller Combination at or Near Boiling Conditions for Liquid Hydrogen, Adv. in Cryogenic Engrg., Vol. 8, p. 446-455, Plenum Press, Inc., (1963).
- Hollander, A., Thermodynamic Aspects of Cavitation in Centrifugal Pumps, ARS Journ., Vol. 32, p. 1594-1595, (Oct. 1962).
- Gelder, T. F., R. S. Ruggeri, and R. D. Moore, Cavitation Similarity Considerations Based on Measured Pressure and Temperature Depressions in Cavitated Regions of Freon 114, NASA TN D-3509 (July 1966).
- Ruggeri, R. S. and T. F. Gelder, Effects of Air Content and Water Purity on Liquid Tension at Incipient Cavitation in Venturi Flow, NASA TN D-1459, (1963).
- 15. Ruggeri, R. S. and T. F. Gelder, Cavitation and Effective Liquid Tension of Nitrogen in a Tunnel Venturi, NASA TN-2088, (1964).
- Gelder, T. F., R. D. Moore, and R. S. Ruggeri, Incipient Cavitation of Freon -114 in a Tunnel Venturi, NASA TN D-2662, (1965).
- 17. Ruggeri, R. S., R. D. Moore, and T. F.Gelder, Incipient Cavitation of Ethylene Glycol in a Tunnel Venturi, NASA TN D-2772, (1965).
- 18. Ruggeri, R. S., Private communication.
- Flow Measurement, Chap. 4, Part 5 Measurement of quantity of materials, p. 17, PTC, 19.5; 4-1959, the American Society of Mechanical Engineers, 29 West 39th St., New York 18, N. Y.

- 20. Kittredge, C. P., Detection and Location of Cavitation, Plasma Physics Lab, Princeton Univ., Princeton, N. J., Report MATT-142 (Aug. 1962). Available from O. T. S., U. S. Dept. of Commerce, Washington, 25, D. C.
- Lehman, A. F. and J. O. Young, Experimental Investigations of Incipient and Desinent Cavitation, ASME Paper No. 63-AHGT-20 (Mar. 1963).
- 22. Holl, J. W., Discussions of Symposium on Cavitation Research Facilities and Techniques, Presented at Fluids Engr'g. Div. Confer., Phila., Pa., May 18-20, 1964, Available from ASME, United Engineering Center, 345 East 47th St., New York 17, New York.

9. Appendix A --- Acoustic Detector

A detailed drawing of the acoustic transducer is given on figure 9.1 and a schematic of the instrument hook-up is given on figure 9.2.

The transducer consists of a barium-titanate piezoelectric crystal sandwiched between the body of the transducer and a machine screw, figure 9.1. The mechanical coupling or initial compression level in the crystal could be varied by means of the machine screw. Thus, the sensitivity of the crystal to mechanical vibration could be adjusted somewhat. Electrical leads were attached to the adjustment screw and to the body of the transducer. Coaxial electrical wire was used to connect the transducer to a cathode-follower-amplifier, see figure 9.2. The signal was then filtered through a variable band-pass filter and displayed on an oscilloscope. The band-pass filter was set to admit signal frequencies of 3 to 200 kHz for most tests.

The acoustic transducer was screw-mounted in the downstream flange of the plastic venturi via pipe threads. Most of the system vibration and noise appeared to be of low frequency and was easily eliminated with the band-pass filter.

Cavitation was readily discernible on the oscilloscope and was characterized by large-amplitude, high-frequency signals.

10. Appendix B---Method Used to Compensate the Experimental Inception Data for Temperature Deviation about the Nominal Isotherms

(1) It was assumed that a change in inlet temperature, dT_0 , will produce a change in inlet head, dh_0 , along a constant velocity path, which will be a function of the velocity and temperature only; it is also assumed that this function may be approximated by a few terms of a polynomial. Justification of these assumptions is evidenced by the good results which were obtained for both hydrogen and nitrogen (see figures 4.2 and 4.4) by using the following equation:

$$dh_o = [C_1 T_o^2 + C_2 T_o + C_3 V_o^2 + C_4 V_o + C_5] dT_o.$$
 [10-1]

Holding V_o constant and integrating from $h_{o,1}$ to $h_{o,2}$ and from $T_{o,1}$ to $T_{o,2}$ there results:

$$\begin{bmatrix} h_{o,2} - h_{o,1} \end{bmatrix}_{V_{o}} = C_{1}' [(T_{o,2})^{3} - (T_{o,1})^{3}] + C_{2}' [(T_{o,2})^{2} - (T_{o,1})^{2}] + (T_{o,2} - T_{0,1}) (C_{3}V_{o}^{2} + C_{4}V_{o} + C_{5}), \qquad [10-2]$$

where the subscript "1" refers to the position of a data point before it is transferred to a new position identified by the subscript "2".

For each of the following steps (two through seven) there is a corresponding graphical illustration on Figure 10.1.

(2) h_0 vs V_0 experimental data were plotted, a separate graph being used for each test fluid. The data points were identified with their individual temperatures so that "best-fit" curves could be drawn through each group of data points having a common nominal temperature. A nominal temperature is defined as that temperature which is selected to

represent a specific group of data points having little temperature variation. These first-approximation isotherms are shown as dashed lines on step two of figure 10.1.

One of the nominal isotherms is chosen, on the basis of availability of sufficient experimental h_0 vs V_0 data at or near that temperature, as a reference or "base" isotherm for succeeding computations. This isotherm is designated $T_{0,B}$ in figure 10.1 while the other isotherms are designated T_0 ' and T_0 ".

(3) The constants in equation [10-2] are evaluated by selecting pairs of values of h_o and T_o from the nominal isotherms at identical velocities as follows: on figure 10.1 the tail of each arrow indicates a value of $h_{o,1}$ and $T_{o,1}$ while the arrow head points to $h_{o,2}$ and $T_{o,2}$. The coordinate points from each arrow are then used in equation [10-2]. Note that each arrow provides one equation, hence five arrows are needed to evaluate the constants in [10-2]. The arrows always follow a constant velocity path and must be strategically placed in order for the five equations to be independent. The actual data points are not shown since they are not used in this step. The equation derived from this step will "transfer" data from one temperature to another within the confines of the bounding isotherms.

(4) In step four of the illustration, arrows are used to indicate the "transferral" of experimental data points to a new location near the base isotherm. $h_{o,1}$ and $T_{o,1}$ are known from the experimental data, while $T_{o,2}$ is simply the base nominal temperature, $T_{o,B}$; values of $h_{o,2}$ can then be determined, by using equation [10-2], and plotted near the base temperature, $T_{o,B}$. Note that the data transfer always follows a constant velocity path.

(5) A new "best fit" isotherm can then be drawn through all of the "transferred" data points at $T_{o,B}$. This new curve is shown as a solid line in figure 10.1; the first approximation isotherms, drawn as dashed lines, are no longer needed and are omitted in the illustration of this step. The curve obtained from this step represents an improved reference isotherm.

(6) The new reference isotherm and equation [10-2] may now be used to reconstruct the other nominal isotherms. T_0' and T_0'' may be reconstructed by using equation [10-2] and $h_{0,1}$ values from the new base isotherm. Note that $T_{0,B}$ now becomes $T_{0,1}$ and T_0'' and T_0''' take their respective turns as $T_{0,2}$. Values of $h_{0,2}$ are then computed in order to plot the two new isotherms shown in the illustration of this step on figure 10.1.

(7) The original experimental data points were then transferred to their nearest nominal temperature by means of equation [10-2]. Those points having a nominal temperature of $T_{o,B}$ were relocated in their final position in step four. This process brings the data points near their respective isotherms, as shown by the arrows in the illustration of step seven. Note that $h_{o,2}$ is again the only unknown in equation [10-2].

(8) The agreement between the new nominal isotherms and the transferred experimental data points was then observed: If the fit was not satisfactory, "best-fit" curves were drawn through the "transferred" data points and the entire computational procedure---steps (3) through (7)--- was repeated. Several iterations were necessary to obtain suitable mathematical expressions for liquid hydrogen and liquid nitrogen: tables 4.3, 4.4, and 4.5 as well as figures 4.2 and 4.4 were prepared by using the following equations.
Hydrogen:

$$\begin{bmatrix} h_{o,2} - h_{o,1} \end{bmatrix}_{V_o} \approx 5.86 [(T_{o,2})^2 - (T_{o,1})^2] + (T_{o,2} - T_{o,1}) (0.41 V_o - 400.35).$$
 [10-3]

Nitrogen:

$$\begin{bmatrix} h_{o,2} - h_{o,1} \end{bmatrix}_{V_o} \approx 0.000835 \left[(T_{o,2})^3 - (T_{o,1})^3 \right]$$

-0.2729 $\left[(T_{o,2})^2 - (T_{o,1})^2 \right] + 30.152 (T_{o,2} - T_{o,1}).$ [10-4]

It should be noted that some of the terms in equation [10-2] become negligible and consequently are not included in [10-3] and [10-4]. It is observed that equation [10-3] for hydrogen is velocity dependent, while equation [10-4] for nitrogen is not. It is not recommended that equations [10-3] and [10-4] be used outside the general area of the data points given.

Figure 2.1 Schematic of Cavitation Flow Apparatus.

Photograph of Plastic Venturi Test Section Installed in System. Note Counter -- Used to Correlate Flow Data with Film Event. Figure 2.2

Pressure Distribution Through Test Section for Non-Cavitating Flow. Figure 2.5

82102-8

(.2): Schematic of thermocouple recording circuit

Figure 2.6 Installation and wiring details of thermocouples used **B**-70630 to measure cavity temperatures

Schematic diagram of thermocouple measuring circuit, showing physical location and electrical connections for the thermocouples Figure 2.7

Figure 4.1 Cavitation Parameter for Liquid Hydrogen as Function of Test Section Inlet Velocity.

Figure 4.2 Effect of Test Section Inlet Velocity and Liquid Temperature on Required Inlet Head for Cavitation Inception in Liquid Hydrogen

Figure 4.4 Effect of Test Section Inlet Velocity and Liquid Temperature on Required Inlet Head for Cavitation Inception in Liquid Nitrogen.

40

Section Inlet Velocity and Liquid Temperature.

Figure 4.6 Photograph Showing Typical Cavitation Inception in Liquid Hydrogen

Figure 4.7 Photograph Showing Typical Cavitation Inception in Liquid Nitrogen

Figure 4.8

Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.9 Pressure and temperature depressions within cavity in liquid hydrogen.

Figure 4.10 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.11 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.12 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.13 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.14 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.15 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.16 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inche's

Figure 4.17 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.18 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.19 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.20 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.21 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.22 Pressure and temperature depressions within cavity in liquid hydrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.23 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.24 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.26 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.25 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.27 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.28 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.29 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.30 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.31 Pressure and temperature depressions within cavity in liquid nitrogen.

Axial distance from minimum pressure location, x, inches

Figure 4.32 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.33 Pressure and temperature depressions within cavity in liquid nitrogen.

Figure 4.34 Pressure and temperature depressions within cavity in liquid nitrogen.

(.1): Typical incipient cavitation. Note scribe marks used to identify nominal cavity length.

(.2): Nominal cavity length, 1-1/4
inch; V_o = 111 ft/sec, T_o =
36.50°R, P_o = 23.3 psia,
K_v = 1.46.

(.3): Nominal cavity length, 2 inch; $V_0 = 155$ ft/sec, $T_0 = 36.79^{\circ}$ R, $P_0 = 36.3$ psia, $K_v = 1.83$.

(.4): Nominal cavity length, 3-1/4 inch; V_o= 204.7 ft/ sec, T_o= 40.97°R, P_o= 59.3 psia, K_y= 1.60.

Figure 4.35 Photographs showing typical appearance of developed cavities in liquid hydrogen.

(.1): $V_0 = 35.22 \text{ ft/sec}, T_0 = 140.1^{\circ}\text{R},$ $P_0 = 15.55 \text{ psia}, K_1 = 1.86.$

(.3): $V_o = 45.84 \text{ ft/sec}, T_o = 150.7^{\circ} \text{R},$ $P_o = 29.25 \text{ psia}, K_v = 1.53.$

(.5): $V_0 = 38.25 \text{ ft/sec}, T_0 = 160.7^{\circ} \text{R},$ $P_0 = 49.20 \text{ psia}, K_v = 0.97.$

(.2): $V_o = 72.89 \text{ ft/sec}$, $T_o = 140.7^{\circ}\text{R}$, $P_o = 16.20 \text{ psia}$, $K_v = 2.15$.

(.4): $V_o = 73.13 \text{ ft/sec}, T_o = 150.5^{\circ} \text{R},$ $P_o = 28.90 \text{ psia}, K_v = 2.04.$

(.6): $V_0 = 74.14 \text{ ft/sec}, T_0 = 160.7^{\circ}\text{R},$ / P_ = 48.95 psia, K_v = 1.82.

Figure 4.36 Photographs showing effects of velocity and temperature on the appearance of developed cavities in liquid nitrogen; nominal cavity length, 3-1/4 inch.

Figure 9.2 Block Diagram of Signal Conditioning Instruments Used with Acoustic Cavitation Detection Device.

Figure 10.1 Illustration of Method Used to Construct Nominal Isotherms from Experimental Data.

Liquid Hydrogen
Data for
Inception
Cavitation
Table 4.1

Run #	T _o (°R)	V _o (ft/sec)	m (lb _m /sec)	h o (ft, abs)	Po (psia)	h v (ft, abs)	P v (psia)	$\mathbf{K}_{\mathbf{iv}}$	h (ft, abs)
R026A	36.47	73.6	2. 623	614.6	18.87	478.9	14.70	1.61	333.8
R026B	36.77	72.4	2.572	606.1	18.56	505.0	15.45	1.24	334.6
R031A	36. 63	132.1	4.713	1244.9	38.26	492.6	15.09	2.78	339.9
031C	36.59	133.1	4.750	1228.0	37.76	488.0	14.95	2.69	309.3
R 032	37.22	167.1	5.945	1756.2	53.81	548.1	16.70	2.79	308.1
R034	36.50	106.2	3.788	962.0	29.56	481.8	14.78	2.74	377.1
035	37.19	169.7	6.040	1755.0	53.81	538.0	16.40	2.72	261.5
R 03 6	37.67	108.2	3.819	1062.0	32.36	585.0	17.75	2.62	454.9
R037	37.55	134.7	4.769	1362.6	41.56	573.7	17.43	2.80	421.7
R 038	38.21	170.5	6.010	1822.0	56.36	638.4	19.27	2.62	309.8
R 039	36.99	184.9	6.599	1973.5	60, 66	524.0	16.00	2.73	200.5
040	37.40	185.6	6.600	2042.5	62.56	560.8	17.06	2.77	256.1
R04 0	37.55	183.3	6.511	2051.5	62.76	574.1	17.44	2.83	309.1
0 4 3 A	37.03	180.6	6.440	1906.0	58.56	524.0	16.00	2.73	214.5
043B	36.97	180.0	6.420	1902.0	58.46	521.0	15.90	2.74	221.7
049	36. 63	91.0	3. 241	802.7	24.62	492.3	15.08	2.41	373.2
051	36.85	91.2	3.241	825.3	25.27	511.2	15. 63	2.43	394.2
052	38.00	92.6	3.257	915.1	27.72	616.5	18.65	2.24	470.4
054	40.64	125.0	4.288	1577.3	46.62	931.6	27.45	2.66	767.6
056	40.79	154.3	5. 298	1989.3	58.82	951.5	28.00	2.81	754.1
057	40.91	174.1	5.975	2303.9	68, 12	969.0	28.47	2.84	732.9
058	40.88	124.3	4.254	1604.8	47.32	964.3	28.35	2.67	804.2
059	40.70	120.2	4.120	1507.4	44.52	939.1	27.66	2.54	758.8

Table 4.2 Cavitation Inception Data for Liquid Nitrogen

K _{iv} h (ft, abs)
P _v (psia)
h v (ft, abs)
Р _о (рвіа)
h o (ft, abs)
in (lb _m /sec)
V _o (ft/sec)
T (°R)
Run #

74

.

Experimental Data Points Which Have Been Temperature Compensated by Means of Equation [10-3] for Hydrogen and Equation [10-4] for Nitrogen Table 4.3

o t/sec)		91.2	92.6	125.0	154.3	174.1	124.3	120.2			72.05	43.64	49.92	50.76	47.90	
h _o V (ft, abs) (f		801.9	875.1	1623.8	2019.2	2317.5	1620.4	1545.7			266.06	109.52	231.88	232.93	126.97	
Nominal Temp (°R)		36.5	37.5	41.0	41.0	41.0	41.0	41.0			140	140	160	160	140	
Run #	F 1 4 1	051	052	054	056	057	058	059		 	109	110	111A	111B	112	
V o (ft/sec)		134.7	170.5	184.9	185.6	183.3	180.6	180.0	91.0		43.21	67.10	65.45	66.67	70.62	65.39
h o (ft, abs)	DGEN	1357.9	1742.5	1921.5	2054	2045.8	1957.9	1853.1	794.2	OGEN	150.73	327.51	356.31	356.00	294.63	227.20
Nominal Temp (°R)	- НҮDR	37.5	37.5	36.5	37.5	37.5	37.5	36.5	36.5	NITR	150	160	165	1 65	150	140
Run #		R037	R038	R039	040	R040	043A	043B	049		100	105	106A	106B	107	108
V o (ft/sec)	 	73.6	72.4	132.1	133.1	167.1	106.2	169.7	108.2		19.27	61.68	64.54	66.44	33.70	33.90
h o (ft, abs)		616.3	590.3	1234.2	1220.6	1785.9	962.0	1788.1	1047.6		54.84	380.48	396.79	262.13	85.41	176.82
Vominal Temp (°R)		36.5	36.5	36.5	36.5	37.5	36.5	37.5	37.5		140	170	170	150	140	160
Run # 1		R026A	R026B	R031A	031C	R032	R034	035	R036		005B	021RR	022RR	024RR	095	6.60

K. iv		41.0°R	1 1	0.89	1.65	2.12	2.41	2.59	2.70	2.77	2.80	2.82	2.83	2.86	2.89
ь °	(ft, abs)	Temp =	981.82												981.82
ч°	(ft, abs)	Nominal	952	101	1189	1311	1435	1562	1691	1825	1961	2101	2253	2423	2518
1	ł	5°R	26	62	24	51	65	74	77	78	77	75	74	76	77
K.		37.5	0	г.	2.2	2.	2.(~	 ~	~	5	~	5.	2	5.
ч х	(ft, abs)	Temp =	569.25												569.25
ч Ч	(ft, abs)	Nominal	643	747	851	959	1068	1181	1296	1415	1537	1663	1800	1956	2044
		R	30	00	38	69	70	76	77	77	75	72	71	72	73
K. iv		36.5°	- -	2.(2.	2.1	2.	2.	2.	2	2.	2.	 		2.
ч Ч	(ft, abs)	Temp =	481.77					<u>,,</u>							481.77
q°	(ft, abs)	Nominal	581	681	781	885	066	1099	1209	1324	1442	1564	1697	1849	1935
^ v	ft/sec)		70	80	06	100	110	120	130	140	150	160	170	180	185

Calculated Data Used to Construct Nominal Isotherms for Liquid Hydrogen Inception Table 4.4

Calculated Data Used to Construct Nominal Isotherms for Liquid Nitrogen Inception Table 4.5

1.92 2.06 2.20 2.35 2.35 2.48 2.48 2.60 2.60 0.77 1.27 1.59 1.78 K. iv 160°R 1 11 (ft, abs) 145.78 145.78 Temp د ب Nominal (ft, abs) 150.5 168.0 179.5 193.5 210.5 231.0 256.0 348.5 158.0 284.5 316.0 0 4 170°R 1.75 1.93 2.45 2.57 1.53 2.02 2.32 0.18 0.84 1.22 1.50 1.72 2.29 2.43 2.53 K. iv 2.11 2.67 1.92 2.12 50°R 73 2.21 I I 1 1 11 0 (ft, abs) Nominal Temp 83.50 83.50 239.50 239.50 ч Ч Temp Nominal ft, abs) 198.5 233.5 100.5 110.5 122.0 136.0 153.0 173.5 258.5 276.5 293.5 93.0 291.0 251.0 262.5 314.0 339.0 431.5 367.5 399.0 227.0 241.0 чo 165°R 140°R 1.97 2.08 2.13 2.20 2.28 2.37 2.49 2.60 2.70 0.12 1.56 1.74 2.26 1.87 2.75 0.85 1.93 2.09 2.53 1.31 2.41 K. iv 2.61 1 H 11 (ft, abs) Temp 44.40 44.40 187.87 187.87 Temp ړ ب Nominal Nominal (ft, abs) 116.0 190.0 188.5 56.0 85.0 136.5 161.5 196.0 206.0 294.0 63.5 73.5 99.0 221.5 217.5 231.5 248.5 269.0 322.5 354.0 254.0 S 386. °م (ft/sec)>° 45 50 55 60 65 45 50 55 60 65 70 20 25 30 35 40 70 20 **25** 30 35 40

Table 4.6 Experimental thermodynamic data for liquid hydrogen

ļ

ĸ		1.85	1.74	1.70	1.34	1.32	1.18	1.39	1.19	1.02	2.00	1.95	2.17	1 80	60 T	1.88	1.90	1.61	1.59	1.52	1.98	1.97	1.96	1.64	1.68	1.60
$^{P}_{8,T}$	(psia)	•	ı	10.38		ı	15.85	ı	,	22.20	ı		11.63		•		12.17	ı	ı	20.83	ı	ı	7.70	ı	,	17.58
$^{P}_{6,T}$	(psia)	12.26	9.83	7.81	14.07	12.53	10.71	19.63	14,50	14.51	12.61	8.13	5.60	10 26	07.01	8.10	5.33	22.74	14.42	9.52	12.20	7.48	3.17	16.59	11.57	8.33
$\mathbf{P}_{\mathbf{2,T}}$	(psia)	10.10	8.78	8.36	11.82	11.42	10.68	14.28	12.57	11.97	9.54	8.27	7.08	00 0	7.00	9.39	7.92	12.53	11.38	10.68	7.40	4.30	3.50	10.62	9.88	9.68
ъ Б	(psia)	•	ı	•	•	1	21.57	•	ı	ı	ŀ		•		•	,	22.00	,	ı	31.40	,	•	18.10	ı	ı	30.40
P ₇	(psia)	ı	13.52	10.04		19.37	14.37	ı	23.59	18.49		12.90	8.30		•	19.40	11.10		25.90	15.80	•	13.20	8.75	ı	26.60	14.85
ъ С	(psia)	10.57	9.35	8.57	15.32	13.77	12.52	24,52	17.72	16.47	11.20	8.90	8.90		14.70	11.60	9.40	22 80	16.00	13.80	11.20	9.20	9.05	16.80	14 60	13.55
ъ 4	(psia)	9.82	9.2	8.77	13.37	12.67	11.97	23.37	16.17	15.72	9.40	8.20	8.20		11.90	11.10	10.00	17,10	15.10	13.60	10.00	8.90	9.05	14 60	14 00	13.50
$_2^{P_2}$	(psia)	9.42	8.67	8.22	12.37	11.97	11.57	18.02	15.27	15.37	9.40	8,30	7,80		11.40	11.00	9.90	14 80	14.00	12.80	10.00	9.00	8.85	13 80	12 20	12.30
ሲ	(psia)	15.80	16.25	16.30	20.62	20.82	21.20	27.42	27.37	28.95	17.38	17 72	17 37		20.50	20.55	19.90	28.00	27.65	27.60	17 72	17.52	17.37	70 27	27 45	28.68
ሲ ⁰	(psia)	35.97	35.57	35.12	30.97	30 77	30.57	30 57	38 67	38.67	54 20	54 40	56 80		54.40	54.90	54.20	54 BU	53 80	52.70	53 RU	53 90	54.35	50 30	00.00	59.30
>°	(ft/sec)	151.4	152.9	152.8	12.8 7	127 1	130.5	130 7	1 44 1	144.8	106 8	100.4	204 0	0.503	195.6	197.4	195.8		190.4	189.7	106 7	107 2	199.2	0 606	202.02	204.7
ч	(°R)	16 92	37,09	37.11	38 AA	38 74	38.84	40 50	40.62	41.04	27 62	77 20	21.00 27 EA	FC.1C	38.62	38 64	38.43		40.70	40.68	37 KE	21.0J	37.53		40.80	40.70 40.97
Cavity Length	inches)	1-1/4		3-1/4	11/4	F/T-T	3-1/4	V/1 1	1-1/1 2	3-1/4		#/1-1	2 1 1	÷/1=C	1-1/4		3-1/4		1-1/4	2 3-1/4		1-1/4 2	2 3-1/4		1-1/4	2 3-1/4
	Run #		046	000		F 7 0	100		0/0	000		0,0	690			0.7.0			t	1/0			013			075

K		1.93	1.90	1.84	1.51	1.45	1.08	1.81	1.83	1.67	1.36	1.18	1.11	1.33	.94	. 79	1.46	1.40	1.37	1.51	1.26	1.36
P _{8,T}	(pred)	ı	ı	12.28	ı	ı	16.00	·	ı	10.42	ı		20.94	ı	•	25.95	ı	ı	10.17	·	ı	26.93
P _{6,T} (neia)	pred	10.86	8.40	7.40	15.04	10.86	10.20	10.35	9.82	6.18	22.42	16.90	13.15	22.37	18.93	18.42	21.26	9.48	6.17	29.71	21.83	15.53
P2,T	(pred)	8.56	8.13	8.55	11.09	9.58	10.73	8.80	7.08	7.38	16.76	14.58	12.93	21.00	18.18	16.77	9.05	8.77	7.18	19.47	16.91	16.35
P9 (aiad)	(prgd)	ł	ı	19.45	۱	ı	21.25	•	ı	13.60	,	,	27.35			29.30	•	ı	13.75	ı	ì	37.16
P ₇	(prsd)	1	16.65	10.00	ł	21.85	14.10	·	14.55	9.50	ı	26.95	18.60	•	27.10	25.05	ı	12.80	9.40	ı	36.26	26.89
P5	(psia)	12.55	10.80	10.50	18.70	13.80	12.10	13.80	9.30	8.55	25.20	18.70	15.50	26.80	23.60	21.60	11.90	9.50	8.30	34.86	25.46	22.30
P4	(psia)	10.70	10.00	10.00	15.10	12.60	11.70	10.85	9.10	8.60	23.70	16.95	14.90	26.50	23.55	21.55	10.20	9.05	8.30	33.66	22.16	21.80
P2	(psia)	10.30	9.40	9.20	12.80	11.80	11.20	9.10	8.30	8.00	17.00	15.20	13.90	24.55	19.10	17.90	9.20	8.80	8.10	21.06	17.96	19.49
Ч ^	(psia)	20.27	20.22	21.50	21.20	21.00	24.22	16.26	15.50	16.60	28.15	28.30	28.68	27.65	28.15	28.00	14.77	14.77	14.90	34.95	35.60	35.95
ч о	(psia)	55.80	55.40	56.30	34.80	34.60	34.50	37.10	36.30	35.30	41.50	40.70	40.40	35.30	33.80	32.80	23.30	23.30	23.60	56.06	53.96	55.99
0 0	(II/sec)	197.6	198.4	201.1	139.2	141.2	143.8	155.4	155.0	153.9	147.4	151.6	153.2	112.8	116.4	117.8	0.111	113.1	116.1	175.7	178.8	180.3
f,	K)	38.54	38.54	38.93	38.84	38.79	39.74	37.10	36.79	37.22	40.82	40.88	40.97	40.70	40.81	40.79	36.50	36.50	36.56	42.48	42.62	42.70
Cavity Length	(inches)	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	5	3-1/4
= . (Run #		076			078			079			080			081			082			091	

Table 4.6 (Continued)

	Cavity length	વ	, ч	^ћ 2	ћ 4	հ5	$^{\rm L}{\rm q}$	h9	$h_{2,T}$	ь _{6,Т}	$^{\mathrm{h}_{8,\mathrm{T}}}$	T ₂	T ₆	T_8
· ~	inches)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(ft, abs)	(<u>K</u>)	(X)	(H
	1-1/4	1173 8	514	300.5	314	337	۱	ŀ	322	398	ı	34.33	35.42	ı
	- /	1162 8	532	276	293	298	438	•	282	316		33.55	34.20	•
	د 3-1/ 4	1148.3	531	261	278	272	321	ı	269	253	333	33.30	32.94	34.49
	-			000		501	1	ſ	380	457	•	35.23	36.22	,
	1-1/4	1028.8	684 , 00	599 201	400 100	100	- 42		368	407	•	35.03	35.55	,
	2 3-1/ 4	1022.6	692 705	369 369	410 386	406	467	719	344	345	517	34.65	34.67	36.94
			000	503	784	826	ı	,	464	652	,	36.31	38.34	ı
	1-1/4	1359.1	940		101	482	792	1	408	472	ı	35.57	36.40	ı
	2 3-1/4	1315.9	985 985	497	514	540	611	ı	387	472	742	35.30	36.40	39.15
			670	300	300	360	ı		314	409	ı	34.00	35.59	ı
	1-1/4 2	1.021	185	264	260	284	418	1	266	262	,	33.25	33.16	1
	2 3-1/4	1858.4	570	247	261	284	264	•	226	176	376	32.44	31.30	35.14
	۰ ۰			276	194	479	1	ı	312	328	ı	34.15	34.42	ł
	1-1/4	1798.8	110	100	267	373	642	ı	300	261	•	33.91	33.14	•
	2 3-1/4	1816.9 1789.9	657 657	317	320	300	357	735	255	205	395	33.01	31.99	35.39
	•				673	763	I	4	402	761		35.55	39.31	•
	1-1/4	1854.6	946 023	4//	200 201	101 101	а 875	. 1	368	470	,	35.01	36.36	•
	2 3-1/4	1819.1 1782.0	932 932	410	- 64 1	450	517		344	304	693	34.65	33.98	38.74
	1 - 1 / 4	1762 6	582	321	320	360	,	1	235	396	ı	32. 67	35.41	1
	F . T - T	1765 1	576	287	284	294	427	ı	133	241	1	30.15	32.72	ı
	2-1/4	1779.0	570	282	289	289	279	597	108	26	395	29. 29	28.84	32.87
	1/4	0 YUU2	958	437	475	552	ı	ı	341	544	ı	34.61	37.22	ı
	- /1-1	2003.4	932	424	455	475	006	· 1	315	374	1	34.18	35.10	•
	3-1/4	2009.7	016	392	438	440	484	1039	309	268	580	34.07	33.28	37.60

Table 4.6 (Continued)

. 80

T ₈ (°R)	ب ۱	35.44	,	,	36.99	ı	,	34.51	,	ı	38.77		•	40.23			34.34	ı	ł	40.50
т ₆ (°R)	34.74 33.32	32.67	36.61	34.74	34.38	34.49	34.16	31.77	39.22	37.35	35.84	39.20	38.11	37.93	34.96	33.97	31.75	41.24	39.04	36.81
T_2 (*R)	33.43 33.16	33.43	34.87	34.02	34.67	33.57	32.44	32.65	37.30	36.43	35.73	38.79	37.84	37.30	33.71	33.55	32.51	38.29	37.35	37.13
h8,T (ft,abs)		400	ı	,	522	ı	,	335	ı	ı	698	ı	ı	880	ı	ı	325	ı	•	916
ћ 6,Т (ft, abs)	350 270	238	317	350	327	333	314	196	750	556	428	748	627	610	364	303	195	1017	728	507
h2,T (ft,abs)	272 262	275	357	365	345	286	226	237	548	476	421	200	602	550	288	282	230	645	556	536
h ₉ (ft, abs)	, ,	644	ı	,	708	,	•	442	ı	ı	927	ı	ı	866	ı	ı	447	ł	ı	1293
h ₇ (ft, abs)	- 546	321	•	728	458	ı	474	304	ı	912	615	ı	918	844	ı	414	300	ı	1258	606
h ₅ (ft, abs)	406 347	337	618	448	390	448	297	272	849	618	507	204	792	720	384	304	264	1205	858	746
h4 (ft,abs)	344 321	321	492	407	377	348	290	274	796	557	486	897	191	719	327	289	264	1159	740	727
h ₂ (ft, abs)	330 300	294	411	376	357	290	267	253	555	491	446	828	-632	587	293	280	255	701	589	644
h v (ft, abs)	670 671	715	703	700	810	532	502	540	950	961	970	935	950	943	479	479	482	1210	1240	1250
h _o (ft, abs)	1843.2 1830.2	1867.5	1157.0	1149.8	1158.2	1212.4	1183.1	1155.3	1408.5	1381.9	1373.3	1197.0	1147.8	1113.9	757.6	757.6	768.9	1933.9	1866.0	1936.2
Cavity Length (inches)	1-1/4 2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4	1-1/4	2	3-1/4
Run #	076			078			079			080			081			082			091	

Table 4.6 (Continued)

ĸ		1.86	1.97	0.97	1.53	1.70	1.82	2.04	2.13	2.15	1.88	1.22	1.80
Р 8,Т	(psia)	13.85	13.10	48.60	25.00	38.00	37.80	22.40	12.40	12.60	14.70	42.60	13,40
P6,T	(psia)	12.95	12.40	45.10	22.90	33.30	33.30	20.00	12.50	12.30	12.90	38.30	12.50
P2,T	(psia)	12.70	14.50	45.10	26.40	30.90	31.50	19.90	12.90	12.20	15.10	41.90	14.70
م م	(psia)	17.90	17.85	52.10	31.90	47.00	49.60	29.30	18.40	17.80	19.40	50,30	18.60
P	(psia)	14.15	14.00	47.55	24.70	37.70	37.70	22.00	14.00	13.90	15.20	41.40	13.90
ቲ ን	(psia)	13.50	13.40	44.00	23.60	35.90	36.30	22.10	13.60	14.10	13.80	38.85	13.30
с 4	(psia)	13.70	13.90	44.50	23.40	32.10	33.60	21.40	12.60	13.20	15.20	36.35	15.10
ъ 2	(psia)	13.20	13.10	40.60	22.80	34.60	35.40	22.00	13.10	14.00	13.40	37.75	14.30
م ^ہ	(psia)	15.55	15.30	49.20	29.25	48.05	48.95	28.90	16.40	16.20	16.05	49.95	16.00
۹°	(psia)	28.00	42.10	56.30	46.10	85.10	98.10	86.10	78.10	78.00	41.20	65.85	38.60
>°	(ft/sec)	35.22	50.07	38.25	45.84	65.48	74.14	73. 13	73.16	72.89	49.72	51, 13	48.24
ц Ч	(°R)	140.1	139.8	160.7	150.7	160.4	160.7	150.5	140.9	140.7	140.5	161.0	140.5
Cavity Length	(inches)	3-1/4	=	=	=	=	=	=	=	=	=	=	=
	Run #	095	960	660	100	102	105	107	108	109	110	111	112

Table 4.7 Experimental thermodynamic data for liquid nitrogen

Table 4.7 (Continued)

T8 (°R)	138.4	137.6	160.5	147.9	155.6	155.5	146.0	136.7	137.0	139.2	157.8	137.7
т ₆ (°R)	137.3	136.7	159.0	146.4	153.1	153.1	144.7	136.9	136.6	137.2	155.7	136.9
T ₂ (°R)	137.1	139.0	159.0	148.8	151.7	152.1	144.0	137.3	136.4	139.6	157.5	139.2
h ₈ ,T (ft, abs)	39.45	37.35	149.32	73.50	114.50	113.95	65.27	35.12	35.78	41.97	129.50	37.85
ћ ₆ Д (ft, abs)	36.60	35.12	138.12	66.93	99.82	99.68	60.02	35.55	34.82	36.42	115.45	35.55
h2,T (ft, abs)	36.05	41.22	138.12	77.58	92.25	94.20	57.65	36.62	34.42	43.15	127.25	43.90
hg (ft, abs)	51.60	51.40	161.05	95.30	144.50	152.80	87.05	53.15	51.20	56.20	155.10	53. 75
h ₇ (ft, abs)	40.20	39.75	146.20	72.60	113.75	113.75	64.25	39.65	39.45	43.35	125.70	39.45
h ₅ (ft, abs)	38.25	37.95	135.30	69.25	108.00	109.25	64.60	38, 55	40.00	39.15	117.40	37.70
h4 (ft, abs)	38.90	39.45	136.80	68.60	95.90	107.00	62.45	35.55	37.15	43.35	109.45	43.00
h2 (ft, abs)	37.35	37.05	123.10	66.75	103.90	106.45	64.25	37.05	39.70	37.95	114.00	40.65
h (ft, abs)	44.35	43.72	151.10	86.70	147.55	150.45	85.75	46.85	46.38	45.90	153.45	45.75
h _o (ft, abs)	80.18	120.44	173.20	136.76	260.92	301.50	254.98	224.05	223.62	118.15	202.85	110.69
Cavity Length (inches)	3-1/4	=	-	=	-		=	=	=	=	=,	=
Run #	660	960	660	100	102	105	107	108	109	110	111	112

Cavity length used	m	n	р	S. D. [†] = $\sqrt{(1/N) \sum (B - B_t)^2}$
Nominal ¹	. 5*	. 5*	• 5*	2.223
Nominal	. 5*	278	. 5*	. 583
Nominal	. 5**	16**	. 57	. 628
Nominal	. 5**	16**	.85**	. 665
Nominal	• 5 * *	326	.85**	. 568
Nominal	. 5*	308	. 732	. 562
Nominal	-3.52	348	. 554	. 379
Estimated ²	. 5**	16**	.85**	. 604
Estimated	. 5**	306	.85**	.498
Estimated	. 5*	288	. 71	. 489
Estimated	-2,938	306	. 54	. 346

Table 4.8 Results of Computer Solutions of Equation [4.2-2] Using Hydrogen Thermodynamic Data.

1 - Nominal cavity length obtained from movie films.

2 - Cavity length obtained by extrapolation of cavity pressure measurement data.

* - Denotes exponents held constant in computer fit program.

** - Denotes exponents obtained from reference [13].

 f - Standard deviation, where N = number of data points, B = B obtained from theory [13], and B is computed from equation [4.2-2].

Equation [4.2-2]: B = (B)_{ref} $\left(\frac{\alpha_{ref}}{\alpha}\right)^{m} \left(\frac{x_{ref}}{x}\right)^{n} \left(\frac{V_{o}}{V_{o, ref}}\right)^{p}$.

Cavity length used	m	р	S. D. $\dagger = \sqrt{(1/N) \sum (B - B_t)^2}$
Nominal ¹	. 5*	. 5*	. 545
Nominal	. 5**	• 8 5* *	. 671
Nominal	. 5*	.384	. 533
Nomin a l	-1.22	. 492	. 498
Nomin al	0*	.85**	. 644
Nomin a l	0*	.414	. 517

Table 4.9 Results of Computer Solutions of Equation [4.2-2]Using Nitrogen Thermodynamic Data.

 Nominal cavity length obtained from movie films. The exponent n does not appear in these data, as only one cavity length (3-1/4 inches) was used in the nitrogen tests.

- * Denotes exponents held constant in computer fit program.
- ** Denotes exponents obtained from reference [13].
- f Standard deviation, where N = number of data points, B = B obtained from theory [13], and B is computed from equation [4.2-2].

Equation [4.2-2]: B = (B)_{ref}
$$\left(\frac{\alpha \operatorname{ref}}{\alpha}\right)^{m} \left(\frac{\operatorname{ref}}{x}\right)^{n} \left(\frac{\operatorname{V}_{o}}{\operatorname{V}_{o, \operatorname{ref}}}\right)^{p}$$
.

Distribution List for Final Report NASA CR-72286

Contract C-35560A

Copies

National Ae	eronautics and Space Administration	
Lewis Rese	earch Center	
21000 Broo	kpark Road	
Cleveland,	Ohio 44135	
Attention:	Contracting Officer, MS 500-313	1 10
	Liquid Rocket Technology Dianen, MS 500 207	1
	Technical Report Control Office, MS 3-16	1
	A BSC Ligiton Office MS 4-1	2
	AFSC Liaison Onice, MIS 4-1	2
	Library	1
	D. L. Nored, MS $500-209$	1
	Office of Remability & Quality Assurance, MD 500-205	1
	W. E. Roberts, MS 3-17	ì
	E. W. Conrad, MS 100-1	3
	Fluid Systems Components Division, MS 5=5	1
	W. A. Rostafinski, MS 500-305	1
National A Washington	eronautics and Space Administration n, D. C. 20546	
Attention:	Code MT	1
	RPX	2
	RPL	2
	SV	1
	Jack Suddreth, RPL	1
Scientific	and Technical Information Facility	
P. O. Box	. 33	
College Pa	rk, Maryland 20740	
Attention:	NASA Representative Code CRT	6
National A	eronautics and Space Administration	
Ames Res	earch Center	
Moffett Fi	eld, California 94035	
Attantion	I ib wa wur	1
Attention.	C A Surrentson	1
	O. A. Dyvertaon	-

National Aeronautics and Space Administration Flight Research Center P. O. Box 273 Edwards, California 93523 Attention: Library 1 National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Attention: Library 1 National Aeronautics and Space Administration John F. Kennedy Space Center Cocoa Beach, Florida 32931 Attention: Library 1 National Aeronautics and Space Administration Langley Research Center Langley Station Hampton, Virginia 23365 Attention: Library 1 National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas 77001 Attention: Library 1 National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama 35812 Attention: Library 1 Keith Chandler, R-P & VE-PA 1 Leren Gross, R-P & VE-PAC 1 Hugh Campbell, R-P & VE-PEC 1 J. L. Vaniman, R-P & VE-PTP

Copies

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 1 Library Attention: 1 Henry Burlage Office of the Director of Defense Research & Engineering Washington, D. C. 20301 Dr. H. W. Schulz, Office of Asst. Dir. 1 Attention: (Chem. Technology) Defense Documentation Center Cameron Station 1 Alexandria, Virginia 22314 RTD(RTNP) Bolling Air Force Base 1 Washington, D. C. 20332 Arnold Engineering Development Center Air Force Systems Command Tullahoma, Tennessee 37389 1 Attention: AEOIM Advanced Research Projects Agency Washington, D. C. 20525 1 Attention: D. E. Mock Aeronautical Systems Division Air Force Systems Command Wright-Patterson Air Force Base, Dayton, Ohio 45433 1 Attention: D. L. Schmidt, Code ASRCNC-2 Air Force Missile Test Center Patrick Air Force Base, Florida 32925 1 Attention: L. J. Ullian

Copies

	Copies
Air Force Systems Command (SCLT/Capt. S. W. Bowen) Andrews Air Force Base Washington, D. C. 20332	1
Air Force Rocket Propulsion Laboratory (RPR) Edwards, California 93523	1
Air Force Rocket Propulsion Laboratory (RPM) Edwards, California 93523	1
Air Force FTC (FTAT-2) Edwards Air Force Base, California 93523	
Attention: Col. J. M. Silk	1
Air Force Office of Scientific Research Washington, D. C. 20333	
Attention: SREP, Dr. J. F. Masi	1
Office of Research Analyses (OAR) Holloman Air Force Base, New Mexico 88330	
Attention: RRRT Maj. R. E. Brocken, Code MDGRT	1 1
U. S. Air Force Washington, D. C. 20330	
Attention: Col. C. K. Stambaugh, Code AFRST	1
Commanding Officer U. S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina, 27706	,
U.S. Arma Minstle Country I	1
Redstone Arsenal, Alabama 35808	
Attention: Chief, Document Section Dr. W. Wharton	1 1

Copies

Bureau of Naval Weapons	
Department of the Navy	
Washington, D. C. 20360	
Attention: J. Kay, Code RTMS-41	1
Commander	
U. S. Naval Missile Center	
Point Mugu, California 93041	
Attention: Technical Library	1
Commander	
U. S. Naval Ordnance Test Station	
China Lake, California 93557	
Attention: Code 45	1
Code 753	1
Commanding Officer	
Office of Naval Research	
1030 E. Green Street	
Pasadena, California 91101	1
Director (Code 6180)	
U. S. Naval Research Laboratory	
Washington, D. C. 20390	
Attention: H W. Carbart	1
Picatinny Arsenal	
Dover, New Jersey 07801	
Att the I Develop Chief	
Attention: I. Forsten, Chief	1
Liquid Propulsion Laboratory	
Union Carbide - Nuclear Division	
Oak Ridge Gaseous Diffusion Plant	
P. O. Box P	
Oak Ridge, Tennessee 37830	
	1
Attention: W. J. WILCOX	*

Ì

Air Force Aero Propulsion Laboratory Research & Technology Division Air Force Systems Command United States Air Force Wright-Patterson AFB, Ohio 45433 Attention: APRP (C. M. Donaldson) 1 Aeroject-General Corporation P. O. Box 296 Azusa, California 91703 Attention: Librarian 1 Aerojet-General Corporation 11711 South Woodruff Avenue Downey, California 90241 Attention: F. M. West, Chief Librarian 1 Aerojet-General Corporation P. O. Box 1947 Sacramento, California 95809 Attention: Technical Library 2484-2015A 1 Aeronutronic Division of Philco Corporation Ford Road Newport Beach, California 92600 Attention: Dr. L. H. Linder, Manager 1 Technical Information Department 1 Aerospace Corporation P. O. Box 95085 Los Angeles, California 90045 Attention: Library-Documents 1 Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140 Attention: A. C. Tobey 1

Copies

Copies

ARO, Incorporated Arnold Engineering Development Center Arnold AF Station, Tennessee 37389	
Attention: Dr. B. H. Goethert Chief Scientist	1
Atlantic Research Corporation Shirley Highway & Edsall Road Alexandria, Virginia 22314	
Attention: Security Office for Library	1
Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	
Attention: Report Library, Room 6A	1
Beech Aircraft Corporation Boulder Facility Box 631 Boulder, Colorado 80302	
Attention: Library	1
Bell Aerosystems, Inc. Box 1 Buffalo, New York 14205	
Attention: Library	1
Bendix Systems Division Bendix Corporation Ann Arbor, Michigan 48106	
Attention: Library	1
The Boeing Company Aero Space Division P. O. Box 3707 Seattle, Washington 98124	
Attention: Ruth E. Peerenboom (1190)	1

Silver Spring, Maryland 20910 Chrysler Corporation Space Division New Orleans, Louisiana 70150 Attention: Librarian Curtiss-Wright Corporation Wright Aeronautical Division Woodridge, New Jersey 07075 Attention: G. Kelley University of Denver Denver Research Institute P. O. Box 10127 Denver, Colorado 80210 Attention: Security Office Douglas Aircraft Company, Inc. Santa Monica Division 3000 Ocean Park Blvd., Santa Monica, California 90405 Attention: Library Fairchild Stratos Corporation Aircraft Missiles Division Hagerstown, Maryland 20740 Attention: J. S. Kerr General Dynamics/Astronautics P. O. Box 1128 San Diego, California 92112 Attention: Library & Information Services (128-00)

Chemical Propulsion Information Agency

Applied Physics Laboratory

8621 Georgia Avenue

Copies

1

1

1

1

1

1

Copies

.

Convair Division General Dynamics Corporation P. O. Box 1128 San Diego, California 92112	
Attention: Mr. W. Fenning Centaur Resident Project Office	1
General Electric Company Flight Propulsion Lab. Department Cincinnati, Ohio 45215	
Attention: D. Suichu	1
Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York 11714	
Attention: Joseph Gavin	1
IIT Research Institute Technology Center Chicago, Illinois 60616 Attention: Library	1
Kidde Aero-Space Division Walter Kidde & Company, Inc. 675 Main Street Belleville, New Jersey 07109	
Attention: R. J. Hanville, Director of Research Engineering	1
Lockheed Missiles & Space Company P. O. Box 504 Sunnyvale, California 94088	
Attention: Technical Information Center	1
Lockheed Propulsion Company P. O. Box 111 Redlands, California 92374	
Attention: Miss Belle Berlad, Librarian	1

Copies Lockheed Missiles & Space Company Propulsion Engineering Division (D. 55-11) 1111 Lockheed Way Sunnyvale, California 94087 1 Marquardt Corporation 16555 Saticoy Street Box 2013 - South Annex Van Nuys, California 91404 Attention: Librarian 1 Purdue University Lafayette, Indiana 47907 Attention: Technical Librarian 1 Rocketdyne, A Division of North American Rockwell Corporation 6633 Canoga Avenue Canoga Park, California 91304 Attention: Library, Department 596-306 1 Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025 Attention: Thor Smith 1 TRW Systems, Incorporated One Space Park Redondo Beach, California 90200 Attention: G. W. Elverum 1 STL Tech. Lib. Doc. Acquisitions 1 TRW, Incorporated TAPCO Division 23555 Euclid Avenue Cleveland, Ohio 44117 Attention: P. T. Angell 1

United Aircraft Corporation Corporation Library 400 Main Street East Hartford, Connecticut 06118 1 Library Attention: 1 Frank Owen 1 W. E. Taylor United Aircraft Corporation Pratt and Whitney Division Florida Research and Development Center P. O. Box 2691 West Palm Beach, Florida 33402 1 Attention: Library California Institute of Technology Pasadena, California 91109 1 Attention: Dr. A. Acosta Prof. M. S. Plesset 1 The Pennsylvania State University Ordnance Research Laboratory P. O. Box 30 State College, Pennsylvania 16801 1 Attention: Prof. G. F. Wislicenus 1 Dr. J. W. Holl Hydronautics, Incorporated Pendell School Road Howard County Laurel, Maryland 20810 1 Attention: Dr. Philip Eisenberg St. Anthony Falls Hydraulic Laboratory Mississippi River at Third Avenue, S.E. Minneapolis, Minnesota 55414 1 Attention: Prof. J. F. Ripkin

Copies

State University of New York - Buffalo Mechanical Engineering Department Buffalo, New York 14214 Attention: Dr. Virgil J. Lunardini Weapons Research Establishment Department of Supply Box 1424H G. P. O. Adelaide Salisbury, South Australia Attention: Peter Pemberton NUMEC P. O. Box 306 Lewiston, New York 14092 Attention: Thomas T. Nagamoto Aerojet-General Corporation P. O. Box 1947 Sacramento, California 95809 Attention: Dale R. Nielsen Wyle Laboratories 128 Maryland Street El Segundo, California 92246 Attention: W. Harry Probert TRW Systems, Incorporated Bldg. 01, Room 1070F One Space Park Redondo Beach, California 90278 Attention: Lincoln B. Dumont Aerojet-General Corporation Liquid Rocket Operations Dept. 9680, Bldg. 2025-2 Sacramento, California 95809 Attention: Ralph L. Sabiers

97

USCOMM - ERL

Copies

1

1

1

1

1

1