349 research outputs found
Aerosol delivery of trail pheromone disrupts the foraging of the red imported fire ant, \u3ci\u3eSolenopsis invicta\u3c/i\u3e
BACKGROUND: The fire ant, Solenopsis invicta, is one of the most aggressive and invasive species in the world. The trail pheromone Z,E-α-farnesene (91% purity)was prepared, and disruption of worker trail orientation was tested using an ethanol based aerosol formulation presenting a single puff of this compound by airbrush and compressed air. Trail-following behavior was recorded by overhead webcam and ants digitized before and after presentation of the aerosol treatment at four rates (1.6, 16, 160 and 1600 ng cm−2).
RESULTS: Ants preferred 110 ng cm−1 over 11, 1.1 and 0.11 ng cm−1 for trail following. Within seconds of presentation of 1600 ng cm−2, the highest dose tested, trail disruption was observed. Disruption was evident as reduced arrival success and reduction in the trail integrity statistic (r2), as well as increased deviation from the trail (deg). The distribution of walking track angles was also flattened.
CONCLUSIONS: The feasibility of using aerosol for delivery of trail pheromone was demonstrated, but the need for high purity combined with the difficulty of commercial supply makes this technique impractical. However, the commercial production of Z,E-α-farnesene of high purity by industrial biotechnology or from (E)-nerolidol may be possible in future, which would facilitate further development of trail pheromone disruption of S. invicta
HUMANISE: Human-Inspired Smart Management, towards a Healthy and Safe Industrial Collaborative Robotics
The workplace is evolving towards scenarios where humans are acquiring a more active and dynamic role alongside increasingly intelligent machines. Moreover, the active population is ageing and consequently emerging risks could appear due to health disorders of workers, which requires intelligent intervention both for production management and workers’ support. In this sense, the innovative and smart systems oriented towards monitoring and regulating workers’ well-being will become essential. This work presents HUMANISE, a novel proposal of an intelligent system for risk management, oriented to workers suffering from disease conditions. The developed support system is based on Computer Vision, Machine Learning and Intelligent Agents. Results: The system was applied to a two-arm Cobot scenario during a Learning from Demonstration task for collaborative parts transportation, where risk management is critical. In this environment with a worker suffering from a mental disorder, safety is successfully controlled by means of human/robot coordination, and risk levels are managed through the integration of human/robot behaviour models and worker’s models based on the workplace model of the World Health Organization. The results show a promising real-time support tool to coordinate and monitoring these scenarios by integrating workers’ health information towards a successful risk management strategy for safe industrial Cobot environments.This work is also based upon work from COST Actions CA18106 supported by COST (European Cooperation in Science and Technology) and the Basque Government grants, IT1489-22, ELKARTEK21/109 and EUSK22/17
Adolescent Major Depressive Disorder: Neuroimaging Evidence of Sex Difference during an Affective Go/No-Go Task
Compared to female major depressive disorder (MDD), male MDD often receives less attention. However, research is warranted since there are significant sex differences in the clinical presentation of MDD and a higher rate of suicide in depressed men. To the best of our knowledge, this is the first functional magnetic resonance imaging (fMRI) study with a large sample addressing putative sex differences in MDD during adolescence, a period when one of the most robust findings in psychiatric epidemiology emerges; that females are twice as likely to suffer from MDD than males. Twenty-four depressed and 10 healthy male adolescents, together with 82 depressed and 24 healthy female adolescents, aged 11–18 years, undertook an affective go/no-go task during fMRI acquisition. In response to sad relative to neutral distractors, significant sex differences (in the supramarginal gyrus) and group-by-sex interactions (in the supramarginal gyrus and the posterior cingulate cortex) were found. Furthermore, in contrast to the healthy male adolescents, depressed male adolescents showed decreased activation in the cerebellum with a significant group-by-age interaction in connectivity. Future research may consider altered developmental trajectories and the possible implications of sex-specific treatment and prevention strategies for MDD
Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1
The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development
Identifying rate-limiting nodes in large-scale cortical networks for visuospatial processing: an illustration using fMRI
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network
An Iterative Jackknife Approach for Assessing Reliability and Power of fMRI Group Analyses
For functional magnetic resonance imaging (fMRI) group activation maps, so-called second-level random effect approaches are commonly used, which are intended to be generalizable to the population as a whole. However, reliability of a certain activation focus as a function of group composition or group size cannot directly be deduced from such maps. This question is of particular relevance when examining smaller groups (<20–27 subjects). The approach presented here tries to address this issue by iteratively excluding each subject from a group study and presenting the overlap of the resulting (reduced) second-level maps in a group percent overlap map. This allows to judge where activation is reliable even upon excluding one, two, or three (or more) subjects, thereby also demonstrating the inherent variability that is still present in second-level analyses. Moreover, when progressively decreasing group size, foci of activation will become smaller and/or disappear; hence, the group size at which a given activation disappears can be considered to reflect the power necessary to detect this particular activation. Systematically exploiting this effect allows to rank clusters according to their observable effect size. The approach is tested using different scenarios from a recent fMRI study (children performing a “dual-use” fMRI task, n = 39), and the implications of this approach are discussed
- …