22 research outputs found
FOXP3 TSDR Measurement Could Assist Variant Classification and Diagnosis of IPEX Syndrome
This is the final version. Available on open access from Springer via the DOI in this recordData Availability:
The genotype and clinical data in this study could be used to identify individuals and so cannot be made openly available. Access to data is open to any scientist or institution that complies with the required data protection regulation to protect the identity of the donors, within the framework of the existing consent. Requests for collaboration can be made by application to the Genetic Beta Cell Research Bank (https://www.diabetesgenes.org/current-research/genetic-beta-cell-research-bank/).Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.Wellcome TrustDiabetes UKResearch EnglandNational Institute for Health and Care Research (NIHR
Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins
<p>Abstract</p> <p>Background</p> <p>Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the <it>Xiphophorus </it>melanoma model system, a mutated version of the EGF receptor Xmrk (<it>Xiphophorus </it>melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation.</p> <p>Methods</p> <p>Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene <it>FOSL1 </it>was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated.</p> <p>Results</p> <p>Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (<it>Fosl1</it>), early growth response 1 (<it>Egr1</it>), osteopontin (<it>Opn</it>), insulin-like growth factor binding protein 3 (<it>Igfbp3</it>), dual-specificity phosphatase 4 (<it>Dusp4</it>), and tumor-associated antigen L6 (<it>Taal6</it>). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that <it>FOSL1</it>, <it>OPN</it>, <it>IGFBP3</it>, <it>DUSP4</it>, and <it>TAAL6 </it>also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of <it>FOSL1 </it>in human melanoma cell lines reduced their proliferation and migration.</p> <p>Conclusion</p> <p>Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development. Specifically, a role of FOSL1 in melanomagenic processes is demonstrated. These data are the basis for future detailed analyses of the investigated target genes.</p
N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway
The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection
FOXP3 TSDR Measurement Could Assist Variant Classification and Diagnosis of IPEX Syndrome
Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.UnknownRD&E staff can access the full-text of this article by clicking on the 'Additional Link' above and logging in with NHS OpenAthens if prompted