12,117 research outputs found

    Classical resolution of singularities in dilaton cosmologies

    Get PDF
    For models of dilaton-gravity with a possible exponential potential, such as the tensor-scalar sector of IIA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to points at which a trajectory meets the Milne horizon, but the trajectories can be smoothly continued through the horizon to an instanton solution of the Euclidean theory. We find some exact cosmology/instanton solutions that lift to black holes in one higher dimension. For one such solution, the singularities of a big crunch to big bang transition mediated by an instanton phase lift to the black hole and cosmological horizons of de Sitter Schwarzschild spacetimes.Comment: 24 pages, 2 figure

    Cosmological D-instantons and Cyclic Universes

    Get PDF
    For models of gravity coupled to hyperbolic sigma models, such as the metric-scalar sector of IIB supergravity, we show how smooth trajectories in the `augmented target space' connect FLRW cosmologies to non-extremal D-instantons through a cosmological singularity. In particular, we find closed cyclic universes that undergo an endless sequence of big-bang to big-crunch cycles separated by instanton `phases'. We also find `big-bounce' universes in which a collapsing closed universe bounces off its cosmological singularity to become an open expanding universe.Comment: 21 pages, 4 figures. v2: minor change

    Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes

    Get PDF
    The wear resistance of several thermoplastic polyurethanes (TPUs) having different chemical nature and micronscale arrangement of the hard and soft segments has been investigated by means of erosion and abrasion tests. The goal was correlating the erosion performances of the materials to their macroscopic mechanical properties. Unlike conventional tests, such as hardness and tensile measurements, viscoelastic analysis proved to be a valuable tool to study the erosion resistance of TPUs. In particular, a strict correlation was found between the erosion rate and the high-frequency (~10^7 Hz) loss modulus. The latter reflects the actual ability of TPU to dissipate the impact energy of the erodent particles

    From Wave Geometry to Fake Supergravity

    Full text link
    The `Wave Geometry' equation of the pre-WWII Hiroshima program is also the key equation of the current `fake supergravity' program. I review the status of (fake) supersymmetric domain walls and (fake) pseudo-supersymmetric cosmologies. An extension of the domain-wall/cosmology correspondence to a triple correspondence with instantons shows that `pseudo-supersymmetry' has another interpretation as Euclidean supersymmetry.Comment: 14 pages. Minor Revisions to original. To appear in proceedings of the 5th International Symposium on Quantum Theory and Symmetries (QTS5), Vallodolid, July 2007. in version

    Towards Quantum Cosmology without Singularities

    Get PDF
    In this paper we investigate the vanishing of cosmological singularities by quantization. Starting from a 5d Kaluza--Klein approach we quantize, as a first step, the non--spherical metric part and the dilaton field. These fields which are classically singular become smooth after quantization. In addition, we argue that the incorporation of non perturbative quantum corrections form a dilaton potential. Technically, the procedure corresponds to the quantization of 2d dilaton gravity and we discuss several models. From the 4d point of view this procedure is a semiclassical approach where only the dilaton and moduli matter fields are quantized.Comment: 9 pages, 2 figures, Latex, epsfig.sty, epsf.te

    \u3ci\u3eCorrigendum\u3c/i\u3e (Russo et al. 2007): A Re-Analysis of Growth–Size Scaling Relationships of Woody Plant Species

    Get PDF
    Russo et al. (2007) tested two predictions of the Metabolic Ecology Model (Enquist et al. 1999, 2000) using a data set of 56 tree species in New Zealand: (i) the rate of growth in tree diameter (dD/dt) should be related to tree diameter (D) as dD/dt = βDα and (ii) tree height (H) should scale with tree diameter as H(D) = γDδ, where t is time, β and γ are scaling coefficients that may vary between species, and α and δ are invariant scaling exponents predicted to equal 1/3 and 2/3, respectively (Enquist et al. 1999, 2000). To this end, Russo et al. (2007) used maximum likelihood methods to estimate α and δ and their two-unit likelihood support intervals. As noted in our original manuscript, the growth–diameter scaling exponent and coefficient covary, complicating the estimation of confidence intervals. We now recognize that the method we used to estimate support intervals (using marginal support intervals with the nuisance parameters fixed) underestimates the breadth of the interval and that the support intervals, properly estimated, should account for the variability in all parameters (Hilborn & Mangel 1997). This can be done in several ways. For example, the Hessian matrix can be used to estimate the standard deviation for each parameter, assuming asymptotic normality. Alternatively, one can systematically vary the parameter for which the interval is being estimated, re-estimate the Maximum likelihood estimates (MLEs) for the other parameters, and take the support interval to be the values of the target parameter that result in log likelihoods that are two units away from the maximum (Edwards 1992; Hilborn & Mangel 1997). A third and more direct approach to comparing data with prediction is to use the likelihood ratio test (LRT), which explicitly tests if a model with a greater number of parameters provides a significantly better fit to the data than a simpler model in which some parameters are fixed at predicted values (Hilborn & Mangel 1997; Bolker in press). Here, we re-analyze our data using LRTs, present a table revising Tables 1 and 2 from Russo et al. (2007), and reevaluate whether there is statistical support for the predictions of the Metabolic Ecology Model that we tested in Russo et al. (2007). We used LRTs to test, respectively, whether a model in which a,or d, was estimated at its MLE had a significantly greater likelihood than did a model with α = 1/3, or δ = 2/3, for the growth–diameter and height–diameter scaling relationships

    Affective temperaments and neurocognitive functioning in bipolar disorder

    Get PDF
    Background: There is evidence that patients with bipolar disorder (BD) score higher on affective temperament ratings compared to healthy controls (HCs). Moreover, unaffected relatives demonstrate similar patterns as BD patients suggesting that such temperaments are related to the genetic risk for BD and may serve as endophenotypes for the disorder, It is unknown whether affective temperaments are associated with other core features of BD, such as impairments in neurocognition. This study examined the relationship between affective temperaments and neurocognition in patients with BD and in HCs. Methods: Temperaments were evaluated using the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego, Auto-questionnaire version (TEMPS-A) in 64 patients with BD and 109 HCs. Neurocognitive functioning was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). Correlational analyses between temperaments and cognition were conducted in BD and HC subjects. Results: Data suggest that affective temperaments and neurocognition are correlated. In BD higher ratings of cyclothymia and irritability were associated with better processing speed, working memory, reasoning and problem-solving. In the HC group, increased irritability was related to worse performance on measures of attention and social cognition. Limitations: Lack of functional outcome measures to evaluate the impact of temperaments and cognition on psychosocial functioning. It would be useful to test these findings on unaffected relatives of BD patients. Conclusions: Cyclothymic and irritable temperaments are correlated with specific aspects of neurocognition in BD. This study is among the few exploring the dimensional relationship between temperaments and cognition in BD, and provides preliminary evidence for future studies investigating the neural and genetic mechanisms underlying the association between these variables. (C) 2014 Elsevier By. All rights reserved

    A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Get PDF
    Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H(3)O(+), O(2)(+) and NO(+) in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (\u3c10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted

    Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P

    Get PDF
    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important in this region. NNW had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (\u3c2 km) evenly divided between sea salts, non-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (\u3c2 km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates from Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust. Low-altitude Channel exhibits the highest condensation nuclei (CN) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2–7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (≥65%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo in SE Asia reflects enhanced soot
    • …
    corecore