72 research outputs found

    Anemomenotatic orientation in beetles and scorpions

    Get PDF
    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli

    Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of <it>Coenobita clypeatus </it>(Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.</p> <p>Results</p> <p>The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that <it>C. clypeatus </it>has visual and mechanosensory skills that are comparable to those of marine Crustacea.</p> <p>Conclusion</p> <p>In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of <it>C. clypeatus</it>. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.</p

    IS 421/Contributions

    No full text
    Summary. We studied 4 polydomous colonies of the giant ant Camponotus gigas living on ca. 5 ha of primary rain forest in Borneo. Colony structure was flexible, comprising between 8 and 14 mostly subterranean nests. During the course of the study some nests were abandoned and others were established. Colonies appeared territorial with nests being connected by trails through the forest canopy. The best studied colony had a territory of 0.8 ha and a population of ca. 7000 workers, distributed unevenly among an average of 11 nests. Workers were bimorphic, majors on average weighed 372 mg and minors 135 mg. The castes differed in the morphology particularly by allometric growth of the head (mean head width 6.93 mm and 3.56 mm). Foraging was mainly nocturnal. At dusk large numbers of foragers (between 35 and 2287 left single nests within 75 minutes of the onset of foraging) invaded the canopy, many workers commuting between the canopy and the nests and all returning home by dawn. During the daytime foraging was reduced and was restricted to a much smaller number of workers which roamed the forest floor. C. gigas foragers collected mainly honeydew (90%) with the remainder consisting of insect prey and bird droppings. Hunting success was increased by rainfall. The numbers of foragers in each nest frequently changed naturally, but could be manipulated by altering local food supply

    The interaction of the paired antennal sense organs in the wind orientation of walking dung beetles and tenebrionid beetles (Insecta, Coleoptera)

    Get PDF
    1. Bei der Anemomenotaxis arbeiten die Windrichtungen perzipierenden, paarigen Sinnesorgane der Antennen - vermutlich die Johnstonschen Organe - als Synergisten zusammen. Der Ausfall der für die Windrichtung spezifischen afferenten Meldungen eines Fühlers führt zu einer Halbierung der Drehtendenzstärke (Abb.I-ll). Es konnten keine Anhaltspunkte gefunden werden, die auf eine direkte zentrale Kompensation dieses Effektes hinweisen. Verschiedene Arten der Ausschaltung, totalc (Abb.2) oder teilweise (Abb. 4) Amputation (bei der der Pedicellus unverletzt bleibt) oder Blockierung des Pedicellus-Flagellumgelenks durch Lackierung (Abb.3), bewirken dieselben Änderungen im Orientierungsverhalten. 2. Der einzelne Fühler fungiert bei der Anemomenotaxis als "zweisinniger Lenker". Ein Käfer mit nur einem Fühler ist - nach einer genügend langen Erholungszeit - noch fähig, die Windrichtung festzustellen und zu ihr eindeutige menotaktische Kurse zu steuern (vgl. z. B. Abb. 1, 9). Außerdem kann er sich wie ein intakter Käfer (Abb. 14) bei plötzlicher Anderung der Reizrichtung um den kleineren Winkelbetrag zu seiner Sollrichtung zurückdrehen (Abb. 15). 3. Zwischen Drehtendenzstärke und Reizrichtung besteht nach den Ergebnissen der Ausschaltversuche eine Sinusfunktion. Gleichgroße Rechts- oder Linksabweichungen des Käfers von der positiven oder negativen Grundrichtung werden von rechtem und linkem Fühler mit der gleichen Drehtendenzstärke bewertet (Abb. 13). Es ist deshalb naheliegend, anzunehmen, daß jeder Fühler bei der Reizrichtungsbewertung seinen Abweichungsbetrag von der nächsten der beiden Grundstellungen mißt. In einer Grundstellung befindet sich der Fühler jeweils dann, wenn sich der Käfer genau gegen oder mit dem Wind eingestellt hat. 4. Afferente Drehtendenz und efferentes Drehkommando sind Dreherregungsgrößen, die sich bei Einstellung des Sollwinkels durch ihre antagonistische Wirkung aufheben. Halbierung der Drehtendenzstärke durch Ausschaltung eines Fühlers führt demnach erwartungsgemäß zu einer Verdopplung der Drehkommandowirkung. Daraus und aus der Sinusförmigkeit der Drehtendenzstärkenkurve ergibt sich, daß Drehkommandogrößen, die beim intakten Käfer die Einhaltung von Menotaxiswinkeln von > 30° zur Folge haben, von der halbierten Drehtendenz nicht mehr kompensiert werden können. Die Käfer können dann Dauerrotationen vermeiden, indem sie das Drehkommando soweit abschwächen, daß es von der halbierten Drehtendenz wieder kompensiert wird (Abb. 8). 5. Standardabweichung und mittlere Laufwinkelgröße sind miteinander korreliert. Die Korrelation gilt in gleicher Weise für das intakte und das einseitig antennenamputierte Versuchstier. 6. Nach einer einseitigen Fühlerausschaltung bevorzugen Tenebrio molitor und Scaurus dubius anfänglich Laufrichtungen zur Seite der intakten Antenne hin. Bei allen VT-Arten nimmt die Neigung zum intramodalen Winkeltransponieren nach Fühlerausschaltung sehr stark zu (Abb. 12). 7. Den Grundorientierungen - positive und negative Anemotaxis - liegt, wie auch der Menotaxis, kein tropotaktischer Mechanismus der Fühlerverschaltung zugrunde. Anemotaxis und Anemomenotaxis unterscheiden sich lediglich dadurch, daß bei letzterer ein efferentes Drehkommando die Sollrichtung verstellt. 8. Die experimentellen Befunde werden im Hinblick auf den, der Anemomenotaxis zugrunde liegenden, physiologischen Mechanismus diskutiert: Sie lassen sich alle widerspruchslos mit einem Kompensationsmechanismus vereinen.1. The interaction of the paired antennal sense organs perceiving wind directions-probably the Johnston organs-is a synergistic one. The loss of the specific afferent information concerning wind direction of one antenna is followed by a reduction of 50% of the strength of the "turning tendency" (Figs. I-lI). There is no evidence indicating a central compensation of this effect. Three different ways for eliminating one antenna all resulted in the same effect on orientation behaviour. The three ways were total (Fig. 2) or partial (Fig.4) amputation (in which the pedicellus is not injured) or blocking up the pedicellus-flagellum joint by lacquer (Fig. 3). 2. After an adequate recovery period the beetle with only one antenna is able: a) to determine the wind direction, b) to orientate itself unambiguously anemomenotactically (Fig. 1,9) and c) to turn back to its preferred direction over the smaller angle (Fig. 15). 3. The experimental data suggest a sinoidal function between the strength of the turning tendency and the stimulus direction. In evaluating the stimulus direction each antenna most probably measures its deviation from the nearest of the two basic positions, i. e. exactly with or against the wind: The right or left antenna evaluates equal deviations to the right or the left from the negative or positive basic direction with the same strength of the turning tendency (Fig. 13). 4. The afferent turning tendency and the efferent "course order" are turning excitations, which neutralize each other by their antagonistic action, if the set angle is reached. Halving the strength of the turning tendency by elimination of one antenna therefore leads to a doubling of the course order efficiency. The consequence of this and the sinoidal turning tendency pattern is that course orders, which in the intact beetle lead to angles of 30°, can not be compensated by a halved turning tendency. The beetles then can avoid continuous rotations by diminishing the course order to such an extent that it can be compensated by the halved turning tendency (Fig. 8). 5. The standard deviation and the mean running-angles show a correlation. This correlation is the same for the intact beetle and for the beetle with one antenna amputated. 6. After amputation of one antenna in the beginning Tenebrio molitor and Scaurus dubius at first prefer running towards the side of the intact antenna. After amputation of one antenna all tested species showed an increasing tendency to transpose angles intramodally (Fig. 12). 7. In positive and negative anemotaxis as weil as in anemomenotaxis the cooperation of the two antennae is not based on a tropotactic mechanism. Anemomenotaxis and anemotaxis differ only in the lack of an efferent course order in the latter. 8. The experimental findings with respect to the physiological mechanism concerning anemomenotaxis are discussed: They all are consistent with a compensation mechanism

    Spatiotemporal patterns in indirect defence of a South-East Asian ant-plant support the optimal defence hypothesis

    No full text
    The optimal defence hypothesis predicts that plant parts characterized by a high value and/or a high risk of being attacked should exhibit the highest level of defence. We tested this hypothesis with Macaranga bancana ant-plants, which are protected ef
    corecore