163 research outputs found

    Quantitative Attenuation Correction for PET/CT Using Iterative Reconstruction of Low-Dose Dual-Energy CT

    Full text link
    We present the results of using iterative reconstruction of dual-energy CT (DECT) to perform accurate CT-based attenuation correction (CTAC) for PET emission images. Current methods, such as bilinear scaling, introduce quantitative errors in the PET emission image for bone, metallic implants, and contrast agents. DECT has had limited use in the past for quantitative CT imaging due to increased patient dose and high noise levels in the decoupled CT basis-material images. Reconstruction methods that model the acquisition physics impose a significant computational burden due to the large image matrix size (typically 512 × 512). For CTAC, however, three factors make DECT feasible: (1) a smaller matrix is needed for the transmission image, which reduces the noise per pixel, (2) a smaller matrix significantly accelerates an iterative CT reconstruction algorithm, (3) the monoenergetic transmission image at 511 keV is the sum of the two decoupled basis-material images. Initial results using a 128 × 128 matrix size for a test object comprised of air, soft tissue, dense bone, and a mixture of tissue and bone demonstrate a significant reduction of bias using DECT (from 20% to ?0% for the tissue/bone mixture). FBP reconstructed images, however, have significant noise. Noise levels are reduced from ?8% to ?3% by the use of PWLS reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85861/1/Fessler203.pd

    Noise Characteristics of the FORE+OSEM(DB) Reconstruction Method for the MiCES PET Scanner

    Full text link
    The FORE+OSEM(DB) image reconstruction method has been proposed for the fully-3D MiCES PET scanner under construction at the University of Washington. It is based on Fourier rebinning followed by 2D OSEM and an incorporated model of detector blurring (DB). As an extension, this paper presents the noise/resolution characteristics of this method. Multiple realizations were simulated to estimate the noise properties of the algorithm. The results are compared with OSEM followed by post reconstruction 3D Gaussian smoothing. The results show that the incorporation of detector blurring (OSEM(DB)) into the system matrix improves resolution compared to OSEM, while also inducing an increased variance at all radial locations. In addition, radially-varying noise characteristics are more apparent with OSEM(DB) than with OSEM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85836/1/Fessler204.pd

    Facilitation between invasive herbivores: hemlock woolly adelgid increases gypsy moth preference for and performance on eastern hemlock

    Get PDF
    Interactions between invertebrate herbivores with different feeding modes are common on long‐lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy‐dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet‐feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock‐feeding folivores remains unknown. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field‐grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired‐choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid‐infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. Adelgid‐infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid‐infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid‐infested foliage gained more weight than larvae reared on uninfested control foliage. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range

    Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    Full text link
    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48978/2/pmb4_19_008.pd

    Issues and Challenges in Applications of Artificial Intelligence to Nuclear Medicine -- The Bethesda Report (AI Summit 2022)

    Full text link
    The SNMMI Artificial Intelligence (SNMMI-AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD on March 21-22, 2022. It brought together various community members and stakeholders from academia, healthcare, industry, patient representatives, and government (NIH, FDA), and considered various key themes to envision and facilitate a bright future for routine, trustworthy use of AI in nuclear medicine. In what follows, essential issues, challenges, controversies and findings emphasized in the meeting are summarized

    Development and content validation of a questionnaire for measuring beliefs about using Nicotine Replacement Therapy for smoking cessation in pregnancy.

    Get PDF
    Introduction Improving adherence to nicotine replacement therapy (NRT) in pregnancy may result in higher smoking cessation rates. Informed by the Necessities and Concerns Framework, we developed an intervention targeting pregnancy NRT adherence. To evaluate this, we derived the NRT in pregnancy necessities and concerns questionnaire (NiP-NCQ), which measures perceived need for NRT and concerns about potential consequences. Aims and Methods Here we describe the development and content validation of NiP-NCQ. From qualitative work, we identified potentially modifiable determinants of pregnancy NRT adherence and classed these as necessity beliefs or concerns. We translated these into draft self-report items and piloted items on 39 pregnant women offered NRT and a prototype NRT adherence intervention, assessing distributions and sensitivity to change. After removing poorly performing items, smoking cessation experts (N = 16) completed an online discriminant content validation (DCV) task to determine whether retained items measure a necessity belief, concern, both, or neither construct. Results Draft NRT concern items encompassed safety for the baby, side effects, too much or insufficient nicotine, and addictiveness. Draft necessity belief items included perceived need for NRT for short- and longer-term abstinence, and desire to minimize or cope without NRT. Of 22 out of 29 items retained after piloting, four were removed following the DCV task: three were judged to measure neither construct and one possibly both. The final NiP-NCQ comprised nine items per construct (18 total). Conclusions The NiP-NCQ measures potentially modifiable determinants of pregnancy NRT adherence within two distinct constructs and may have research and clinical utility for evaluating interventions targeting these. Implications Poor adherence to NRT in pregnancy may result from low perceived need and concerns about consequences; interventions challenging these beliefs may yield higher smoking cessation rates. To evaluate an NRT adherence intervention informed by the Necessities and Concerns Framework, we developed the NiP-NCQ. Through the content development and refinement processes described in this paper, we derived an evidence-based, 18-item questionnaire measuring two distinct constructs within two nine-item subscales. Higher concerns and lower necessity beliefs indicate more negative NRT beliefs; NiP-NCQ may have research and clinical utility for interventions targeting these

    CD-based microfluidics for primary care in extreme point-of-care settings

    Get PDF
    We review the utility of centrifugal microfluidic technologies applied to point-of-care diagnosis in extremely under-resourced environments. The various challenges faced in these settings are showcased, using areas in India and Africa as examples. Measures for the ability of integrated devices to effectively address point-of-care challenges are highlighted, and centrifugal, often termed CD-based microfluidic technologies, technologies are presented as a promising platform to address these challenges. We describe the advantages of centrifugal liquid handling, as well as the ability of a standard CD player to perform a number of common laboratory tests, fulfilling the role of an integrated lab-on-a-CD. Innovative centrifugal approaches for point-of-care in extremely resource-poor settings are highlighted, including sensing and detection strategies, smart power sources and biomimetic inspiration for environmental control. The evolution of centrifugal microfluidics, along with examples of commercial and advanced prototype centrifugal microfluidic systems, is presented, illustrating the success of deployment at the point-of-care. A close fit of emerging centrifugal systems to address a critical panel of tests for under-resourced clinic settings, formulated by medical experts, is demonstrated. This emphasizes the potential of centrifugal microfluidic technologies to be applied effectively to extremely challenging point-of-care scenarios and in playing a role in improving primary care in resource-limited settings across the developing world

    The future of hybrid imaging—part 2: PET/CT

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises the state-of-the-art of dual-modality imaging with a focus on clinical applications. We highlight selected areas for potential improvement of combined imaging technologies and new applications. In the second part, we briefly review the background of dual-modality PET/CT imaging, discuss its main applications and attempt to predict technological and methodological improvements of combined PET/CT imaging. After a decade of clinical evaluation, PET/CT will continue to have a significant impact on patient management, mainly in the area of oncological diseases. By adopting more innovative acquisition schemes and data processing PET/CT will become a fast and dose-efficient imaging method and an integral part of state-of-the-art clinical patient management

    Altered branching patterns of Purkinje cells in mouse model for cortical development disorder

    Get PDF
    Disrupted cortical cytoarchitecture in cerebellum is a typical pathology in reeler. Particularly interesting are structural problems at the cellular level: dendritic morphology has important functional implication in signal processing. Here we describe a combinatorial imaging method of synchrotron X-ray microtomography with Golgi staining, which can deliver 3-dimensional(3-D) micro-architectures of Purkinje cell(PC) dendrites, and give access to quantitative information in 3-D geometry. In reeler, we visualized in 3-D geometry the shape alterations of planar PC dendrites (i.e., abnormal 3-D arborization). Despite these alterations, the 3-D quantitative analysis of the branching patterns showed no significant changes of the 77 ± 8° branch angle, whereas the branch segment length strongly increased with large fluctuations, comparing to control. The 3-D fractal dimension of the PCs decreased from 1.723 to 1.254, indicating a significant reduction of dendritic complexity. This study provides insights into etiologies and further potential treatment options for lissencephaly and various neurodevelopmental disorders
    • 

    corecore