203 research outputs found

    Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment

    Get PDF
    Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics

    Heat and mass transfer studies of palm kernel cake (PKC) in fluidized bed fermenter

    Get PDF
    Solid state fermentation (SSF) which involves the growth of microorganism on moist solid substrates in the absence of free flowing water, has gained renewed attention over submerged fermentation for specific applications. During the SSF process in fermenter, there are three main engineering problems encountered such as the removal of metabolic heat from the substrate, diffusion of O2 and moisture through the substrate, and heterogeneity of the substrate and inoculum. A fluidized bed fermenter in which the particles move independently like a fluid was proposed to conduct the study. Throughout the study, rapid heat transfer from PKC to air was experimentally observed within the first 150 s with a temperature drop of 30 °C. This indicated that the excellent heat transfer between palm kernel cake and air allows solid state fermentation of PKC without accumulation of metabolic heat in the fermenter. Apart from heat removal, water adsorption study on PKC from air to bed was carried out. It showed that the increase of adsorbed water in PKC was proportional to air relative humidity and inversely proportional to superficial air velocity. The maximum moisture content adsorbed by PKC under fluidization conditions was around 10% (on dry basis). Finally, mathematical models for heat and mass transfer were proposed which can predict the experimental data quite satisfactorily

    Coronal X-Ray Emission from Nearby, Low-Mass, Exoplanet Host Stars Observed by the MUSCLES and Mega-MUSCLES HST Treasury Survey Projects

    Full text link
    The high energy X-ray and ultraviolet (UV) radiation fields of exoplanet host stars play a crucial role in controlling the atmospheric conditions and the potential habitability of exoplanets. Major surveys of the X-ray/UV emissions from late-type (K and M spectral type) exoplanet hosts have been conducted by the MUSCLES and Mega-MUSCLES Hubble Space Telescope (HST) Treasury programs. These samples primarily consist of relatively old, ``inactive'', low mass stars. In this paper we present results from X-ray observations of the coronal emission from these stars obtained using the Chandra X-ray Observatory, the XMM-Newton Observatory, and the Neil Gehrels Swift Observatory. The stars effectively sample the coronal activity of low-mass stars at a wide range of masses and ages. The vast majority (21 of 23) of the stars are detected and their X-ray luminosities measured. Short-term flaring variability is detected for most of the fully-convective (M \leq 0.35 M_{\odot}) stars but not for the more massive M dwarfs during these observations. Despite this difference, the mean X-ray luminosities for these two sets of M dwarfs are similar with more massive (0.35 M_{\odot} \leq M \leq 0.6 M_{\odot}) M dwarfs at \sim5 ×\times 1026^{26} erg s1^{-1} compared to \sim2 ×\times 1026^{26} erg s1^{-1} for fully-convective stars older than 1 Gyr. Younger, fully-convective M dwarfs have X-ray luminosities between 3 and 6 ×\times 1027^{27} erg s1^{-1}.The coronal X-ray spectra have been characterized and provide important information that is vital for the modeling of the stellar EUV spectra.Comment: 39 pages, 15 figures. Accepted for publication in The Astronomical Journa

    Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    Get PDF
    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions

    Evidence for the role of EPHX2 gene variants in anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) and related eating disorders are complex, multifactorial neuropsychiatric conditions with likely rare and common genetic and environmental determinants. To identify genetic variants associated with AN, we pursued a series of sequencing and genotyping studies focusing on the coding regions and upstream sequence of 152 candidate genes in a total of 1205 AN cases and 1948 controls. We identified individual variant associations in the Estrogen Receptor-ß (ESR2) gene, as well as a set of rare and common variants in the Epoxide Hydrolase 2 (EPHX2) gene, in an initial sequencing study of 261 early-onset severe AN cases and 73 controls (P=0.0004). The association of EPHX2 variants was further delineated in: (1) a pooling-based replication study involving an additional 500 AN patients and 500 controls (replication set P=0.00000016); (2) single-locus studies in a cohort of 386 previously genotyped broadly defined AN cases and 295 female population controls from the Bogalusa Heart Study (BHS) and a cohort of 58 individuals with self-reported eating disturbances and 851 controls (combined smallest single locus P<0.01). As EPHX2 is known to influence cholesterol metabolism, and AN is often associated with elevated cholesterol levels, we also investigated the association of EPHX2 variants and longitudinal body mass index (BMI) and cholesterol in BHS female and male subjects (N=229) and found evidence for a modifying effect of a subset of variants on the relationship between cholesterol and BMI (P<0.01). These findings suggest a novel association of gene variants within EPHX2 to susceptibility to AN and provide a foundation for future study of this important yet poorly understood condition

    The Laser Astrometric Test of Relativity Mission

    Get PDF
    This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach ability to measure effects of the next post-Newtonian order (1/c^4) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12 December 2003, Washington, D

    Anisotropic Inflation and the Origin of Four Large Dimensions

    Get PDF
    In the context of (4+d)-dimensional general relativity, we propose an inflationary scenario wherein 3 spatial dimensions grow large, while d extra dimensions remain small. Our model requires that a self-interacting d-form acquire a vacuum expectation value along the extra dimensions. This causes 3 spatial dimensions to inflate, whilst keeping the size of the extra dimensions nearly constant. We do not require an additional stabilization mechanism for the radion, as stable solutions exist for flat, and for negatively curved compact extra dimensions. From a four-dimensional perspective, the radion does not couple to the inflaton; and, the small amplitude of the CMB temperature anisotropies arises from an exponential suppression of fluctuations, due to the higher-dimensional origin of the inflaton. The mechanism triggering the end of inflation is responsible, both, for heating the universe, and for avoiding violations of the equivalence principle due to coupling between the radion and matter.Comment: 24 pages, 2 figures; uses RevTeX4. v2: Minor changes and added references. v3: Improved discussion of slow-rol

    Modified-Source Gravity and Cosmological Structure Formation

    Full text link
    One way to account for the acceleration of the universe is to modify general relativity, rather than introducing dark energy. Typically, such modifications introduce new degrees of freedom. It is interesting to consider models with no new degrees of freedom, but with a modified dependence on the conventional energy-momentum tensor; the Palatini formulation of f(R)f(R) theories is one example. Such theories offer an interesting testing ground for investigations of cosmological modified gravity. In this paper we study the evolution of structure in these ``modified-source gravity'' theories. In the linear regime, density perturbations exhibit scale dependent runaway growth at late times and, in particular, a mode of a given wavenumber goes nonlinear at a higher redshift than in the standard Λ\LambdaCDM model. We discuss the implications of this behavior and why there are reasons to expect that the growth will be cut off in the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we briefly describe how upcoming measurements may probe the differences between the modified theory and the standard Λ\LambdaCDM model.Comment: 22 pages, 6 figures, uses iopart styl

    Could dark energy be vector-like?

    Get PDF
    In this paper I explore whether a vector field can be the origin of the present stage of cosmic acceleration. In order to avoid violations of isotropy, the vector has be part of a ``cosmic triad'', that is, a set of three identical vectors pointing in mutually orthogonal spatial directions. A triad is indeed able to drive a stage of late accelerated expansion in the universe, and there exist tracking attractors that render cosmic evolution insensitive to initial conditions. However, as in most other models, the onset of cosmic acceleration is determined by a parameter that has to be tuned to reproduce current observations. The triad equation of state can be sufficiently close to minus one today, and for tachyonic models it might be even less than that. I briefly analyze linear cosmological perturbation theory in the presence of a triad. It turns out that the existence of non-vanishing spatial vectors invalidates the decomposition theorem, i.e. scalar, vector and tensor perturbations do not decouple from each other. In a simplified case it is possible to analytically study the stability of the triad along the different cosmological attractors. The triad is classically stable during inflation, radiation and matter domination, but it is unstable during (late-time) cosmic acceleration. I argue that this instability is not likely to have a significant impact at present.Comment: 28 pages, 6 figures. Uses RevTeX4. v2: Discussion about relation to phantoms added and additional references cite

    One-loop f(R) gravity in de Sitter universe

    Full text link
    Motivated by the dark energy issue, the one-loop quantization approach for a family of relativistic cosmological theories is discussed in some detail. Specifically, general f(R)f(R) gravity at the one-loop level in a de Sitter universe is investigated, extending a similar program developed for the case of pure Einstein gravity. Using generalized zeta regularization, the one-loop effective action is explicitly obtained off-shell, what allows to study in detail the possibility of (de)stabilization of the de Sitter background by quantum effects. The one-loop effective action maybe useful also for the study of constant curvature black hole nucleation rate and it provides the plausible way of resolving the cosmological constant problem.Comment: 25 pages, Latex file. Discussion enlarged, new references added. Version accepted in JCA
    corecore