312 research outputs found

    12 Years of Precision Calculations for LEP. What's Next?

    Full text link
    I shortly review time period of twelve years, 1989-2000, which was devoted to a theoretical support of experiments at LEP and SLC at Z resonance and discuss several directions of possible future work in the field of precision theoretical calculations for experiments at future colliders.Comment: 11 Latex, including 1 figures. Updated version as appeared in the Journa

    The Higgs Boson Production Cross Section as a Precision Observable?

    Get PDF
    We investigate what can be learned at a linear collider about the sector of electroweak symmetry breaking from a precise measurement of the Higgs boson production cross section through the process e+e- -> hZ. We focus on deviations from the Standard Model arising in its minimal supersymmetric extension. The analysis is performed within two realistic future scenarios, taking into account all prospective experimental errors on supersymmetric particle masses as well as uncertainties from unknown higher order corrections. We find that information on tan beta and M_A could be obtained from a cross section measurement with a precision of 0.5 - 1 %. Alternatively, information could be obtained on the gaugino mass parameters M_2 and mu if they are relatively small, M_2, mu approximately 200 GeV.Comment: 13 pages, 3 figures. Discussion on experimental errors enlarged, references added and updated. Version to appear in Phys. Rev.

    Top quark pair production and decay at linear colliders: signal vs. off resonance background

    Get PDF
    Standard Model predictions for the reactions with six fermions in the final state relevant for top quark pair production and decay at linear colliders are discussed. An issue of the double resonance signal versus non doubly resonant background is addresed. Effects related to the off-mass-shell production of the t\bar{t}-pair are discussed.Comment: 9 pages, talk presented by K. Kolodziej at 6th International Symposium on Radiative Corrections RADCOR 2002 and 6th Zeuthen Workshop on Elementary Particle Theory ``Loops and Legs in Quantum Field Theory'', Kloster Banz, Germany, September 8--13, 200

    Testing J/psi Production and Decay Properties in Hadronic Collisions

    Full text link
    The polar and azimuthal angular distributions for the lepton pair arising from the decay of a J/psi meson produced at transverse momentum p_T balanced by a photon [or gluon] in hadronic collisions are calculated in the color singlet model (CSM). It is shown that the general structure of the decay lepton distribution is controlled by four invariant structure functions, which are functions of the transverse momentum and the rapidity of the J/psi. We found that two of these structure functions [the longitudinal and transverse interference structure functions] are identical in the CSM. Analytical and numerical results are given in the Collins-Soper and in the Gottfried-Jackson frame. We present a Monte Carlo study of the effect of acceptance cuts applied to the leptons and the photon for J/psi+ gamma production at the Tevatron.Comment: 22 pages (LaTeX) plus 11 postscript figures, MAD/PH/822, YUMS94-11. Figures are available from the authors or as a compressed tar file via anonymous ftp at phenom.physics.wisc.edu in directory {}~pub/preprints/madph-94-822-figs.tar.

    Itinerant ferromagnetism mediated by giant spin polarization of metallic ligand band in van der Waals magnet Fe5GeTe2

    Get PDF
    We investigate near-Fermi-energy (EF) element-specific electronic and spin states of ferromagnetic van der Waals (vdW) metal Fe5GeTe2. The soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) measurement provides spectroscopic evidence of localized Fe 3d band. We also find prominent hybridization between the localized Fe 3d band and the delocalized Ge/Te p bands. This picture is strongly supported from direct observation of the remarkable spin polarization of the ligand p bands near EF, using x-ray magnetic circular dichroism (XMCD) measurements. The strength of XMCD signal from ligand element Te shows the highest value, as far as we recognize, among literature reporting finite XMCD signal for none-magnetic element in any systems. Combining SX-ARPES and elemental selective XMCD measurements, we collectively point an important role of giant spin polarization of the delocalized ligand Te states for realizing itinerant long-range ferromagnetism in Fe5GeTe2. Our finding provides a fundamental elemental selective view-point for understanding mechanism of itinerant ferromagnetism in low dimensional compounds, which also leads insight for designing exotic magnetic states by interfacial band engineering in heterostructures

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    Scalar charmonium and glueball mixing in e+eJ/ψXe^+ e^-\to J/\psi X

    Full text link
    We study the possibility of the scalar charmonium and glueball mixing in e+ee^+ e^- annihilation at s=10.6\sqrt{s}=10.6 GeV. The effects can be used to explain the unexpected large cross section (12±412\pm 4 fb) and the anomalous angular distribution (α=1.10.6+0.8\alpha= -1.1^{+0.8}_{-0.6}) of the exclusive e+eJ/ψχc0e^+e^-\to J/\psi\chi_{c0} process observed by Belle experiments at KEKB. We calculate the helicity amplitudes for the process e+eJ/ψH(0++)e^+ e^- \to J/\psi H(0^{++}) in NRQCD, where H(0++)H(0^{++}) is the mixed state. We present a detailed analysis on the total cross section and various angular asymmetries which could be useful to reveal the existence of the scalar glueball state.Comment: 10 pages, 4 figures,references updated,typos corrected. Published Version: Phys. Lett. B 594, 118-126 (2004

    Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks

    Get PDF
    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia
    corecore