19 research outputs found

    Non-Maxwellian Electron Energy Probability Functions in the plume of a SPT-100 Hall thruster

    Get PDF
    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent alfa between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent alfa from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent alfa was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the gamma factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.This work was performed in the framework of the 'Model and Experimental validation of spacecraft-thruster Interactions (erosion) for electric propulsion thrusters plumes' (MODEX) project. MODEX is a collaboration between Airbus-DS, ESA, UC3M, ONERA, CNRS-ICARE and KTH aiming to provide a better understanding of the plasma properties in the far-plume of a Hall thruster. The project aimed at providing experimental measurements to better constrain the modelling, and therefore includes both the theoretical/modelling aspect (UC3M and ONERA) and the experimental aspect (KTH, CNRS, ESA and Airbus-DS). The test campaign was conducted at ESA/ESTEC in April-May 2017, using a SPT-100 Hall thruster provided by Airbus-DS. G Giono and J T Gudmundsson were partially supported by the Swedish Government Agency for Innovation Systems (VINNOVA) contracts no. 2016-04094 and 2014-0478, respectively

    advanced electric propulsion diagnostic tools at iom

    Get PDF
    Abstract Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1] , which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1] , [4] ), in two different vacuum facilities

    Elementary scaling laws for the design of low and high power hall effect thrusters

    No full text
    International audienceAn advanced set of scaling laws for Hall e¨ect thrusters running with Xenon as propellant is established on the basis of the existence of an optimum atom number density that warrants a high e©ciency thruster operation. A set of general relationships between macroscopic quantities, like thrust and input power, dimensions, including the channel length, the channel width and the channel mean diameter, and magnetic ¦eld strength are inferred from the main physical processes at work in a Hall thruster discharge. The ¤atom density constraint¥ of which the nature is here critically interpreted allows simplifying those relationships as it leads to a linear dependency between the channel length and mean diameter. Scaling laws which represent an essential tool for sizing up and down Hall thrusters are eventually obtained after proportionnality co-e©cients are determined. This last step is realized by means of a vast database that presently encompasses 33 single-stage Hall thrusters. In order to illustrate the usefulness of this new set of scaling laws, two practical applications are given and discussed. The scaling laws are ¦rst employed to calculate the dimensions and the operating parameters for a 20-kilowatt Hall thruster capable of producing 1 N of thrust. Such an electrical engine would permit orbit transfer of large communication satellites. Finally, the geometry of a Hall thruster is determined for tolerating 100 kW, an interesting power level for interplanetary trips

    Elementary scaling laws for the design of low and high power hall effect thrusters

    No full text
    An advanced set of scaling laws for Hall effect thrusters running with Xenon as propellant is established on the basis of the existence of an optimum atom number density that warrants a high efficiency thruster operation. A set of general relationships between macroscopic quantities, like thrust and input power, dimensions, including the channel length, the channel width and the channel mean diameter, and magnetic field strength are inferred from the main physical processes at work in a Hall thruster discharge. The “atom density constraint” of which the nature is here critically interpreted allows simplifying those relationships as it leads to a linear dependency between the channel length and mean diameter. Scaling laws which represent an essential tool for sizing up and down Hall thrusters are eventually obtained after proportionnality coefficients are determined. This last step is realized by means of a vast database that presently encompasses 33 single-stage Hall thrusters. In order to illustrate the usefulness of this new set of scaling laws, two practical applications are given and discussed. The scaling laws are first employed to calculate the dimensions and the operating parameters for a 20-kilowatt Hall thruster capable of producing 1 N of thrust. Such an electrical engine would permit orbit transfer of large communication satellites. Finally, the geometry of a Hall thruster is determined for tolerating 100 kW, an interesting power level for interplanetary trips

    The European HiPER programme for Future High Power Electric Propulsion Technologies

    No full text
    corecore