868 research outputs found

    Health-seeking beliefs of cardiovascular patients: A qualitative study

    Full text link
    Objectives: The study aims were to (a) describe the experiences of Chinese Australians with heart disease following discharge from hospital for an acute cardiac event; (b) identify patterns and cultural differences of Chinese Australians following discharge from hospital; and (c) illustrate the illness/health seeking behaviors and health beliefs of Chinese Australians. Design: Qualitative study. Methods: Interview data were obtained from the following sources: (a) focus groups of Chinese community participants without heart disease; (b) interviews with patients recently discharged from hospital following an admission for an acute cardiac event; and (c) interviews with Chinese-born health professionals working in Australia. Qualitative thematic analysis was undertaken. Results: Study themes generated from the data were: (1) linking traditional values and beliefs with Western medicine; (2) reverence for health professionals and family; and (3) juxtaposing traditional beliefs and self-management. Conclusions: Considering the influence of cultural values in developing health care plans and clinical decision making is important. © 2011 Elsevier Ltd

    Scaling of Transport Coefficients of Porous Media under Compaction

    Full text link
    Porous sediments in geological systems are exposed to stress by the above-laying mass and consequent compaction, which may be significantly nonuniform across the massif. We derive scaling laws for the compaction of sediments of similar geological origin. With these laws, we evaluate the dependence of the transport properties of a fluid-saturated porous medium (permeability, effective molecular diffusivity, hydrodynamic dispersion, electrical and thermal conductivities) on its porosity. In particular, we demonstrate that the assumption of a uniform geothermal gradient is not adequate for systems with nonuniform compaction and show the importance of the derived scaling laws for mathematical modelling of methane hydrate deposits; these deposits are believed to have potential for impact on global climate change and Glacial-Interglacial cycles.Comment: 6 pages, 2 figure

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    Shock Tunnel Studies of Scramjet Phenomena 1993

    Get PDF
    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology and hypervelocity pulse test facilities are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 10 under NASA Grant NAGw-674

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    The Mechanism of Methane Gas Migration Through the Gas Hydrate Stability Zone: Insights From Numerical Simulations

    Get PDF
    Free gas migration through the gas hydrate stability zone (GHSZ) and subsequent gas seepage at the seabed are characteristic features in marine gas hydrate provinces worldwide. The biogenic or thermogenic gas is typically transported along faults from deeper sediment strata to the GHSZ. Several mechanisms have been proposed to explain free gas transport through the GHSZ. While inhibition of hydrate formation by elevated salinities and temperatures have been addressed previously in studies simulating unfocused, area-wide upward advection of gas, which is not adequately supported by field observations, the role of focused gas flow through chimney-like structures has been underappreciated in this context. Our simulations suggest that gas migration through the GHSZ is, fundamentally, a result of methane gas supply in excess of its consumption by hydrate formation. The required high gas flux is driven by local overpressure, built up from gas accumulating below the base of the GHSZ that fractures the overburden when exceeding a critical pressure, thereby creating the chimney-like migration pathway. Initially rapid hydrate formation raises the temperature in the chimney structure, thereby facilitating further gas transport through the GHSZ. As a consequence, high hydrate saturations form preferentially close to the seafloor, where temperatures drop to bottom water values, producing a prominent subsurface salinity peak. Over time, hydrates form at a lower rate throughout the chimney structure, while initial temperature elevation and salinity peak dissipate. Thus, our simulations suggest that the near-surface salinity peak and elevated temperatures are a result of transient high-flux gas migration through the GHSZ

    Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis

    Get PDF
    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation
    corecore