179 research outputs found

    Algorithm for Adapting Cases Represented in a Tractable Description Logic

    Full text link
    Case-based reasoning (CBR) based on description logics (DLs) has gained a lot of attention lately. Adaptation is a basic task in the CBR inference that can be modeled as the knowledge base revision problem and solved in propositional logic. However, in DLs, it is still a challenge problem since existing revision operators only work well for strictly restricted DLs of the \emph{DL-Lite} family, and it is difficult to design a revision algorithm which is syntax-independent and fine-grained. In this paper, we present a new method for adaptation based on the DL EL\mathcal{EL_{\bot}}. Following the idea of adaptation as revision, we firstly extend the logical basis for describing cases from propositional logic to the DL EL\mathcal{EL_{\bot}}, and present a formalism for adaptation based on EL\mathcal{EL_{\bot}}. Then we present an adaptation algorithm for this formalism and demonstrate that our algorithm is syntax-independent and fine-grained. Our work provides a logical basis for adaptation in CBR systems where cases and domain knowledge are described by the tractable DL EL\mathcal{EL_{\bot}}.Comment: 21 pages. ICCBR 201

    Query rewriting under linear EL knowledge bases

    Get PDF
    With the adoption of the recent SPARQL 1.1 standard, RDF databases are capable of directly answering more expressive queries than simple conjunctive queries. In this paper we exploit such capabilities to answer conjunctive queries (CQs) under ontologies expressed in the description logic called linear EL-lin, a restricted form of EL. In particular, we show a query answering algorithm that rewrites a given CQ into a conjunctive regular path query (CRPQ) which, evaluated on the given instance, returns the correct answer. Our technique is based on the representation of infinite unions of CQs by non-deterministic finite-state automata. Our results achieve optimal data complexity, as well as producing rewritings straightforwardly implementable in SPARQL 1.1

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner.

    Get PDF
    Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress

    Design of cellular, satellite, and integrated systems for 5G and beyond

    Get PDF
    5G AgiLe and fLexible integration of SaTellite And cellulaR (5G-ALLSTAR) is a Korea-Europe (KR-EU) collaborative project for developing multi-connectivity (MC) technologies that integrate cellular and satellite networks to provide seamless, reliable, and ubiquitous broadband communication services and improve service continuity for 5G and beyond. The main scope of this project entails the prototype development of a millimeter-wave 5G New Radio (NR)-based cellular system, an investigation of the feasibility of an NR-based satellite system and its integration with cellular systems, and a study of spectrum sharing and interference management techniques for MC. This article reviews recent research activities and presents preliminary results and a plan for the proof of concept (PoC) of three representative use cases (UCs) and one joint KR-EU UC. The feasibility of each UC and superiority of the developed technologies will be validated with key performance indicators using corresponding PoC platforms. The final achievements of the project are expected to eventually contribute to the technical evolution of 5G, which will pave the road for next-generation communications

    On the Relationships between Decision Management and Performance Measurement

    Get PDF
    Decision management is of utmost importance for the achievement of strategic and operational goals in any organisational context. Therefore, decisions should be considered as first-class citizens that need to be modelled, analysed, monitored to track their performance, and redesigned if necessary. Up to now, existing literature that studies decisions in the context of business processes has focused on the analysis of the definition of decisions themselves, in terms of accuracy, certainty, consistency, covering and correctness. However, to the best of our knowledge, no prior work exists that analyses the relationship between decisions and performance measurement. This paper identifies and analyses this relationship from three different perspectives, namely: the impact of decisions on process performance, the performance measurement of decisions, and the use of performance indicators in the definition of decisions. Furthermore, we also introduce solutions for the representation of these relationships based, amongst others, on the DMN standard.Ministerio de Economía y Competitividad BELI (TIN2015-70560-R)Junta de Andalucía P12-TIC-1867Junta de Andalucía P10-TIC-590

    Visual Ontology Cleaning: Cognitive Principles and Applicability

    Get PDF
    In this paper we connect two research areas, the Qualitative Spatial Reasoning and visual reasoning on ontologies. We discuss the logical limitations of the mereotopological approach to the visual ontology cleaning, from the point of view of its formal support. The analysis is based on three different spatial interpretations wich are based in turn on three different spatial interpretations of the concepts of an ontology.Ministerio de Educación y Ciencia TIN2004-0388

    The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain

    Get PDF
    The process mining (PM) field combines techniques from computational intelligence which has been lately considered to encompass artificial intelligence (AI) or even the latter, augmented intelligence (AIs) systems, and the data mining (DM) to process modelling in order to analyze event logs. To this end, this paper presents a semantic-based process mining framework (SPMaAF) that exhibits high level of accuracy and conceptual reasoning capabilities particularly with its application in real world settings. The proposed framework proves useful towards the extraction, semantic preparation, and transformation of events log from any domain process into minable executable formats – with focus on supporting the further process of discovering, monitoring and improvement of the extracted processes through semantic-based analysis of the discovered models. Practically, the implementation of the proposed framework demonstrates the main contribution of this paper; as it presents a Semantic-Fuzzy mining approach that makes use of labels (i.e. concepts) within event logs about a domain process using a case study of the Learning Process. The paper provides a method which aims to allow for mining and improved analysis of the resulting process models through semantic – labelling (annotation), representation (ontology) and reasoning (reasoner). Consequently, the series of experimentations and semantically motivated algorithms shows that the proposed framework and its main application in real-world has the capacity of enhancing the PM results or outcomes from the syntactic to a much more abstraction levels
    corecore