123 research outputs found
A statistical comparison of EUV brightenings observed by SO/EUI with simulated brightenings in nonpotential simulations
Open access funding provided by Swiss Federal Institute of Technology Zurich. L.H. and K.B. are grateful to the SNF for the funding of the project number 200021_188390. D.H.M. would like to thank the STFC for support via consolidated grant ST/W001195/1. K.A.M. would like to thank the STFC for support via consortium grant ST/W001098/1.The High Resolution Imager (HRIEUV) telescope of the Extreme Ultraviolet Imager (EUI) instrument onboard Solar Orbiter has observed EUV brightenings, so-called campfires, as fine-scale structures at coronal temperatures. The goal of this paper is to compare the basic geometrical (size, orientation) and physical (intensity, lifetime) properties of the EUV brightenings with regions of energy dissipation in a nonpotential coronal magnetic-field simulation. In the simulation, HMI line-of-sight magnetograms are used as input to drive the evolution of solar coronal magnetic fields and energy dissipation. We applied an automatic EUV-brightening detection method to EUV images obtained on 30 May 2020 by the HRIEUV telescope. We applied the same detection method to the simulated energy dissipation maps from the nonpotential simulation to detect simulated brightenings. We detected EUV brightenings with a density of 1.41×10−3 brightenings/Mm2 in the EUI observations and simulated brightenings between 2.76×10−2 – 4.14×10−2 brightenings/Mm2 in the simulation, for the same time range. Although significantly more brightenings were produced in the simulations, the results show similar distributions of the key geometrical and physical properties of the observed and simulated brightenings. We conclude that the nonpotential simulation can successfully reproduce statistically the characteristic properties of the EUV brightenings (typically with more than 85% similarity); only the duration of the events is significantly different between observations and simulation. Further investigations based on high-cadence and high-resolution magnetograms from Solar Orbiter are under consideration to improve the agreement between observation and simulation.Publisher PDFPeer reviewe
Solar prominence diagnostics and their associated estimated errors from 1D NLTE Mg II h&k modelling
Aims. We present further development of the rolling root mean square (rRMS) algorithm. These improvements consist of an increase in computational speed and an estimation of the uncertainty on the recovered diagnostics. This improved algorithm is named the cross root mean square (xRMS) algorithm.
Methods. We used the quantile method to recover the statistics of the line profiles in order to study the evolution of the prominence observed by IRIS on 1 October 2019. We then introduced the improvements to rRMS. These improvements greatly increased the computational speed, and this increase in speed allowed us to use a large model grid. Thus, we utilised a grid of 23 940 models to recover the thermodynamic diagnostics. We used the “good” (but not “best”) fitting models to recover an estimate of the uncertainty on the recovered diagnostics.
Results. The maximum line-of-sight (LOS) velocities were found to be 70 km s−1. The line widths were mostly 0.4 Å, with the asymmetries of most pixels around zero. The central temperature of the prominence was found to range from 10 kK to 20 kK, with uncertainties of approximately ±5 to ±15 kK. The central pressure was around 0.2 dyn cm−2, with uncertainties of ±0.2 to ±0.3 dyn cm−2. The ionisation degree ranged from 1 to 1000, with uncertainties mostly in the range ±10 to ±100. The electron density was mostly 1010 cm−3, with uncertainties of mostly ±109.
Conclusions. The new xRMS algorithm finds an estimation of the errors of the recovered thermodynamic properties. To our knowledge, this is the first attempt at systematically determining the errors from forward modelling. The large range of errors found may hint at the degeneracies present when using a single ion and/or species from forward modelling. In the future, co-aligned observations of more than one ion and/or species should be used to attempt to constrain this problem
The active region source of a type III radio storm observed by Parker Solar Probe during Encounter 2
Context. To investigate the source of a type III radio burst storm during
encounter 2 of NASA's Parker Solar Probe (PSP) mission.
Aims. It was observed that in encounter 2 of NASA's Parker Solar Probe
mission there was a large amount of radio activity, and in particular a noise
storm of frequent, small type III bursts from 31st March to 6th April 2019. Our
aim is to investigate the source of these small and frequent bursts.
Methods. In order to do this, we analysed data from the Hinode EUV Imaging
Spectrometer (EIS), PSP FIELDS, and the Solar Dynamics Observatory (SDO)
Atmospheric Imaging Assembly (AIA). We studied the behaviour of active region
12737, whose emergence and evolution coincides with the timing of the radio
noise storm and determined the possible origins of the electron beams within
the active region. To do this, we probe the dynamics, Doppler velocity,
non-thermal velocity, FIP bias, densities, and carry out magnetic modelling.
Results. We demonstrate that although the active region on the disk produces
no significant flares, its evolution indicates it is a source of the electron
beams causing the radio storm. They most likely originate from the area at the
edge of the active region that shows strong blue-shifted plasma. We demonstrate
that as the active region grows and expands, the area of the blue-shifted
region at the edge increases, which is also consistent with the increasing area
where large-scale or expanding magnetic field lines from our modelling are
anchored. This expansion is most significant between 1 and 4 April 2019,
coinciding with the onset of the type III storm and the decrease of the
individual burst's peak frequency, indicating the height at which the peak
radiation is emitted increases as the active region evolves
Extreme-ultraviolet brightenings in the quiet Sun: Signatures in spectral and imaging data from the Interface Region Imaging Spectrograph
CONTEXT: Localised transient EUV brightenings, sometimes named ‘campfires’, occur throughout the quiet Sun. However, there are still many open questions about these events, in particular regarding their temperature range and dynamics. AIM: We aim to determine whether any transition region response can be detected for small-scale extreme-ultraviolet (EUV) brightenings and, if so, to identify whether the measured spectra correspond to any previously reported bursts in the transition region, such as explosive events (EEs). METHODS: EUV brightenings were detected in a ∼29.4 min dataset sampled by the Solar Orbiter Extreme Ultraviolet Imager (EUI) on 8 March 2022 using an automated detection algorithm. Any potential transition region response was inferred through analysis of imaging and spectral data sampled through coordinated observations conducted by the Interface Region Imaging Spectrograph (IRIS). RESULTS: EUV brightenings display a range of responses in IRIS slit-jaw imager (SJI) data. Some events have clear signatures in the Mg II and Si IV SJI filters, whilst others have no discernible counterpart. Both extended and more complex EUV brightenings are sometimes found to have responses in IRIS SJI data. Examples of EUI intensities peaking before, during, and after their IRIS counterparts were found in light curves constructed co-spatial to EUV brightenings. Importantly, therefore, it is likely that not all EUV brightenings are driven in the same way, with some events seemingly being magnetic reconnection driven and others not. A single EUV brightening occurred co-spatial to the IRIS slit, with the returned spectra matching the properties of EEs. CONCLUSIONS: EUV brightening is a term used to describe a range of small-scale events in the solar corona. The physics behind all EUV brightenings is likely not the same. More research is therefore required to assess their importance for global questions in the field, such as coronal heating
EUV brightenings in the quiet-Sun: Signatures in spectral and imaging data from the Interface Region Imaging Spectrograph
Localised transient EUV brightenings, sometimes named `campfires', occur
throughout the quiet-Sun. However, there are still many open questions about
such events, in particular regarding their temperature range and dynamics. In
this article, we aim to determine whether any transition region response can be
detected for small-scale EUV brightenings and, if so, to identify whether the
measured spectra correspond to any previously reported bursts in the transition
region, such as Explosive Events (EEs). EUV brightenings were detected in a
~29.4 minute dataset sampled by Solar Orbiter's Extreme Ultraviolet Imager on 8
March 2022 using an automated detection algorithm. Any potential transition
region response was inferred through analysis of imaging and spectral data
sampled through coordinated observations conducted by the Interface Region
Imaging Spectrograph (IRIS). EUV brightenings display a range of responses in
IRIS slit-jaw imager (SJI) data. Some events have clear signatures in the Mg II
and Si IV SJI filters, whilst others have no discernible counterpart. Both
extended and more complex EUV brightenings are found to, sometimes, have
responses in IRIS SJI data. Examples of EUI intensities peaking before, during,
and after their IRIS counterparts were found in lightcurves constructed
co-spatial to EUV brightenings. Importantly, therefore, it is likely that not
all EUV brightenings are driven in the same way, with some seemingly being
magnetic reconnection driven and others not. A single EUV brightening occurred
co-spatial to the IRIS slit, with its spectra matching the properties of EEs.
EUV brightenings is a term used to describe a range of small-scale event in the
solar corona. The physics responsible for all EUV brightenings is likely not
the same and, therefore, more research is required to assess their importance
towards global questions in the field, such as coronal heating.Comment: Accepted to A&A, 9 figure
A multiple spacecraft detection of the 2 April 2022 M-class flare and filament eruption during the first close Solar Orbiter perihelion
CONTEXT:
The Solar Orbiter mission completed its first remote-sensing observation windows in the spring of 2022. On 2 April 2022, an M-class flare followed by a filament eruption was seen both by the instruments on board the mission and from several observatories in Earth’s orbit, providing an unprecedented view of a flaring region with a large range of observations.
AIMS:
We aim to understand the nature of the flaring and filament eruption events via the analysis of the available dataset. The complexity of the observed features is compared with the predictions given by the standard flare model in 3D.
METHOD:
In this paper, we use the observations from a multi-view dataset, which includes extreme ultraviolet (EUV) imaging to spectroscopy and magnetic field measurements. These data come from the Interface Region Imaging Spectrograph, the Solar Dynamics Observatory, Hinode, as well as several instruments on Solar Orbiter.
RESULTS:
The large temporal coverage of the region allows us to analyse the whole sequence of the filament eruption starting with its pre-eruptive state. Information given by spectropolarimetry from SDO/HMI and Solar Orbiter PHI/HRT shows that a parasitic polarity emerging underneath the filament is responsible for bringing the flux rope to an unstable state. As the flux rope erupts, Hinode EIS captures blue-shifted emission in the transition region and coronal lines in the northern leg of the flux rope prior to the flare peak. This may be revealing the unwinding of one of the flux rope legs. At the same time, Solar Orbiter SPICE captures the whole region, complementing the Doppler diagnostics of the filament eruption. Analyses of the formation and evolution of a complex set of flare ribbons and loops, of the hard and soft X-ray emissions with STIX, show that the parasitic emerging bipole plays an important role in the evolution of the flaring region.
CONCLUSIONS:
The extensive dataset covering this M-class flare event demonstrates how important multiple viewpoints and varied observations are in order to understand the complexity of flaring regions. While the analysed data are overall consistent with the standard flare model, the present particular magnetic configuration shows that surrounding magnetic activity such as nearby emergence needs to be taken into account to fully understand the processes at work. This filament eruption is the first to be covered from different angles by spectroscopic instruments, and provides an unprecedented diagnostic of the multi-thermal structures present before and during the flare. This complete dataset of an eruptive event showcases the capabilities of coordinated observations with the Solar Orbiter mission
Picoflare jets power the solar wind emerging from a coronal hole on the Sun.
Coronal holes are areas on the Sun with open magnetic field lines. They are a source region of the solar wind, but how the wind emerges from coronal holes is not known. We observed a coronal hole using the Extreme Ultraviolet Imager on the Solar Orbiter spacecraft. We identified jets on scales of a few hundred kilometers, which last 20 to 100 seconds and reach speeds of ~100 kilometers per second. The jets are powered by magnetic reconnection and have kinetic energy in the picoflare range. They are intermittent but widespread within the observed coronal hole. We suggest that such picoflare jets could produce enough high-temperature plasma to sustain the solar wind and that the wind emerges from coronal holes as a highly intermittent outflow at small scales
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Mini-filament eruptions are one of the most common small-scale transients in
the solar atmosphere. However, their eruption mechanisms are still not
understood thoroughly. Here, with a combination of 174 A images of high
spatio-temporal resolution taken by the Extreme Ultraviolet Imager on board
Solar Orbiter and images of the Atmospheric Imaging Assembly on board Solar
Dynamics Observatory, we investigate in detail an erupting mini-filament over a
weak magnetic field region on 2022 March 4. Two bright ribbons clearly appeared
underneath the erupting mini-filament as it quickly ascended, and subsequently,
some dark materials blew out when the erupting mini-filament interacted with
the outer ambient loops, thus forming a blowout jet characterized by a widening
spire. At the same time, multiple small bright blobs of 1-2 Mm appeared at the
interaction region and propagated along the post-eruption loops toward the
footpoints of the erupting fluxes at a speed of ~ 100 km/s. They also caused a
semi-circular brightening structure. Based on these features, we suggest that
the mini-filament eruption first experiences internal and then external
reconnection, the latter of which mainly transfers mass and magnetic flux of
the erupting mini-filament to the ambient corona.Comment: 8 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
Small-scale EUV features as the drivers of coronal upflows in the quiet Sun
Context. Coronal upflows in the quiet Sun are seen in a wide range of features, including jets and filament eruptions. The in situ measurements from Parker Solar Probe within ≈0.2 au have demonstrated that the solar wind is highly structured, showing abrupt and near-ubiquitous magnetic field reversals (i.e., switchbacks) on different timescales. The source of these structures has been associated with supergranular structures on the solar disc. This raises the question of whether there are additional small coronal features that contribute energy to the corona and produce plasma that potentially feeds into the solar wind. /
Aims. During the Solar Orbiter first science perihelion, high-resolution images of the solar corona were recorded using the Extreme Ultraviolet High Resolution Imager (HRIEUV) from the Extreme Ultraviolet Imager (EUI). The Hinode spacecraft was also observing at the same location providing coronal spectroscopic measurements. Combining the two datasets allows us to determine the cause of the weak upflows observed in the quiet Sun and the associated activity. /
Methods. We used a multi-spacecraft approach to characterise regions of upflows. The upflows were identified in the Fe XII emission line by the Hinode EUV Imaging Spectrometer (EIS). We then used imaging data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) and the High Resolution Imagers (HRI) from EUI on board the Solar Orbiter to identify coronal features and magnetic field data from the SDO Helioseismic and Magnetic Imager (HMI). Interface Region Imaging Spectrograph (IRIS) observations were also used to understand the photospheric and chromospheric driving mechanisms. /
Results. We have identified two regions of coronal upflows in the quiet Sun, with respective sizes and lifetimes of (20 Mm2, 20 min) and (180 Mm2, several hours), which are contrasting dynamic events. Both examples show weak flux cancellation, indicating that the source of the upflows and enhancements is related to the magnetic field changes. The first event, a larger upflow region, shows velocities of up to −8.6 km s−1 at the footpoint of a complex loop structure. We observe several distinct extreme ultraviolet (EUV) features including frequent loop brightenings and plasma blobs travelling along closed coronal loops. The second upflow region has velocities of up to −7.2 km s−1. Within it, a complex EUV feature that lasts for about 20 min can be seen. This main feature has several substructures. During its appearance, a clear mini-filament eruption takes place at its location, before the EUV feature disappears. /
Conclusions. Two features, with contrasting properties, show upflows with comparable magnitudes. The first event, a complex loop structure, shares several similarities with active region upflows. The second one, a complex small-scale feature that could not have been well resolved with previous instruments, triggered a cascade of events, including a mini-filament that lead to a measurable upflow. This is remarkable for an EUV feature that many instruments can barely resolve. The complexity of the two events, including small loop brightenings and travelling plasma blobs for the first and EUV small-scale loops and mini-filament for the second one would not have been identifiable as the sources of upflow without an instrument with the spatial resolution of HRIEUV at this distance to the Sun. These results reinforce the importance of the smallest-scale features in the Sun and their potential relevance for and impact on the solar corona and the solar wind
Evolution of dynamic fibrils from the cooler chromosphere to the hotter corona
Dynamic fibrils (DFs) are commonly observed chromospheric features in solar active regions. Recent observations from the Extreme Ultraviolet Imager (EUI) aboard the Solar Orbiter have revealed unambiguous signatures of DFs at the coronal base in extreme ultraviolet (EUV) emission. However, it remains unclear if the DFs detected in the EUV are linked to their chromospheric counterparts. Simultaneous detection of DFs from chromospheric to coronal temperatures could provide important information on their thermal structuring and evolution through the solar atmosphere. In this paper, we address this question by using coordinated EUV observations from the Atmospheric Imaging Assembly (AIA), Interface Region Imaging Spectrograph (IRIS), and EUI to establish a one-to-one correspondence between chromospheric and transition region DFs (observed by IRIS) with their coronal counterparts (observed by EUI and AIA). Our analysis confirms a close correspondence between DFs observed at different atmospheric layers and reveals that DFs can reach temperatures of about 1.5 million Kelvin, typical of the coronal base in active regions. Furthermore, the intensity evolution of these DFs, as measured by tracking them over time, reveals a shock-driven scenario in which plasma piles up near the tips of these DFs and, subsequently, these tips appear as bright blobs in coronal images. These findings provide information on the thermal structuring of DFs and their evolution and impact through the solar atmosphere
- …