93 research outputs found

    SUBMICRON SIZED SINTERED ODS STEELS PREPARED BY HIGH EFFICIENT ATTRITION MILLING AND SPARK PLASMA SINTERING

    Get PDF
    RESUMECet article résume des résultats récents relatifs à l’élaboration et la caractérisation structurale et mécanique d’un acier renforcé à l'oxyde (nuance appelée souvent ROD/ODS). Trois poudres commerciales d'acier, deux poudres austénitiques et une poudre martensitique ont été utilisées comme matières d’étude. Une des poudres austénitiques a été utilisée pour l'étude morphologique lors du broyage humide. Le broyage à haute efficacité est sur la base de ce travail assurant l’obtention de grains nanostructurés. Les modifications morphologiques au cours des étapes de broyage ont été bien décrites. Il a été démontré que 4 heures de broyage en atmosphère humide sont suffisantes pour réaliser des poudres d'acier de dimensions submicroniques. Une dispersion efficace des nano-oxydes dans les aciers ROD/ODS a été obtenue en utilisant un broyage spécifique. On a proposé un procédé de broyage humide et sec combiné à des particules de céramique et d'acier. La méthode de frittage par étincelle (spark plasma sintering (SPS)) a été appliquée pour élaborer des aciers compacts à grains submicroniques. Des grains ayant une taille moyenne de 100 nm ont été observés par microscopie électronique à balayage (MEB) dans les aciers ROD/ODS austénitiques frittées. En comparaison, la microstructure de l’acier ROD/ODS martensitique frittée a donné des grains de tailles de 100 à 300 nm dans les deux cas de broyage sec et de broyage combiné (humide et sec).ABSTRACTThis paper summarizes recent results for preparation, structural and mechanical investigation of oxide dispersed strengthened steel (ODS). Three commercial steel powders, two austenitic steel and one martensitic powders have been used as starting materials. One of the austenitic powders was used for morphological study during wet milling. The high efficient attrition mills are on the basis of this work assuring grains with nanostructure. The morphological changes during milling steps have been described. It was demonstrated that 4 hours milling in wet atmosphere are enough to realize steel powders with submicron dimensions. An efficient dispersion of nanosized oxides in ODS steels was achieved by employing high efficiency attrition milling. A combined wet and dry milling process of fine ceramic and steel particles has been proposed. Spark Plasma Sintering (SPS) was applied to realize submicron grained steel compacts. Grains with 100 nm mean size have been observed by scanning electron microscopy (SEM) in sintered austenitic ODS. In comparison, the sintered martensitic dry and combined milled ODS microstructure consisted of grain sizes with 100-300 nm in each case.KEYWORDS: ODS Steel, Spark Plasma Sintering (SPS), attrition milling, Nano-oxides, structural and mechanical investigatio

    Deciphering the connectivity structure of biological networks using MixNet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As biological networks often show complex topological features, mathematical methods are required to extract meaningful information. Clustering methods are useful in this setting, as they allow the summary of the network's topology into a small number of relevant classes. Different strategies are possible for clustering, and in this article we focus on a model-based strategy that aims at clustering nodes based on their connectivity profiles.</p> <p>Results</p> <p>We present MixNet, the first publicly available computer software that analyzes biological networks using mixture models. We apply this method to various networks such as the <it>E. coli </it>transcriptional regulatory network, the macaque cortex network, a foodweb network and the <it>Buchnera aphidicola </it>metabolic network. This method is also compared with other approaches such as module identification or hierarchical clustering.</p> <p>Conclusion</p> <p>We show how MixNet can be used to extract meaningful biological information, and to give a summary of the networks topology that highlights important biological features. This approach is powerful as MixNet is adaptive to the network under study, and finds structural information without any a priori on the structure that is investigated. This makes MixNet a very powerful tool to summarize and decipher the connectivity structure of biological networks.</p

    Stochastic Cytokine Expression Induces Mixed T Helper Cell States

    Get PDF
    During eukaryotic development, the induction of a lineage-specific transcription factor typically drives differentiation of multipotent progenitor cells, while repressing that of alternative lineages. This process is often mediated by some extracellular signaling molecules, such as cytokines that can bind to cell surface receptors, leading to activation and/or repression of transcription factors. We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Pioneer Award)National Institutes of Health (U.S.) (Grant R01-GM068957

    Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states

    Get PDF
    Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1β instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation

    Spo0A∼P Imposes a Temporal Gate for the Bimodal Expression of Competence in Bacillus subtilis

    Get PDF
    ComK transcriptionally controls competence for the uptake of transforming DNA in Bacillus subtilis. Only 10%–20% of the cells in a clonal population are randomly selected for competence. Because ComK activates its own promoter, cells exceeding a threshold amount of ComK trigger a positive feedback loop, transitioning to the competence ON state. The transition rate increases to a maximum during the approach to stationary phase and then decreases, with most cells remaining OFF. The average basal rate of comK transcription increases transiently, defining a window of opportunity for transitions and accounting for the heterogeneity of competent populations. We show that as the concentration of the response regulator Spo0A∼P increases during the entry to stationary phase it first induces comK promoter activity and then represses it by direct binding. Spo0A∼P activates by antagonizing the repressor, Rok. This amplifies an inherent increase in basal level comK promoter activity that takes place during the approach to stationary phase and is a general feature of core promoters, serving to couple the probability of competence transitions to growth rate. Competence transitions are thus regulated by growth rate and temporally controlled by the complex mechanisms that govern the formation of Spo0A∼P. On the level of individual cells, the fate-determining noise for competence is intrinsic to the comK promoter. This overall mechanism has been stochastically simulated and shown to be plausible. Thus, a deterministic mechanism modulates an inherently stochastic process

    Systematic Single-Cell Analysis of Pichia pastoris Reveals Secretory Capacity Limits Productivity

    Get PDF
    Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity

    The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia

    Get PDF
    The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult

    Investigating the validity of current network analysis on static conglomerate networks by protein network stratification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A molecular network perspective forms the foundation of systems biology. A common practice in analyzing protein-protein interaction (PPI) networks is to perform network analysis on a conglomerate network that is an assembly of all available binary interactions in a given organism from diverse data sources. Recent studies on network dynamics suggested that this approach might have ignored the dynamic nature of context-dependent molecular systems.</p> <p>Results</p> <p>In this study, we employed a network stratification strategy to investigate the validity of the current network analysis on conglomerate PPI networks. Using the genome-scale tissue- and condition-specific proteomics data in <it>Arabidopsis thaliana</it>, we present here the first systematic investigation into this question. We stratified a conglomerate <it>A. thaliana </it>PPI network into three levels of context-dependent subnetworks. We then focused on three types of most commonly conducted network analyses, i.e., topological, functional and modular analyses, and compared the results from these network analyses on the conglomerate network and five stratified context-dependent subnetworks corresponding to specific tissues.</p> <p>Conclusions</p> <p>We found that the results based on the conglomerate PPI network are often significantly different from those of context-dependent subnetworks corresponding to specific tissues or conditions. This conclusion depends neither on relatively arbitrary cutoffs (such as those defining network hubs or bottlenecks), nor on specific network clustering algorithms for module extraction, nor on the possible high false positive rates of binary interactions in PPI networks. We also found that our conclusions are likely to be valid in human PPI networks. Furthermore, network stratification may help resolve many controversies in current research of systems biology.</p
    corecore